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Abstract
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1 Introduction

When a cartel does not include every firm competing in an industry, non-cartel firms can

set their prices higher than they would otherwise have been able to under competitive con-

ditions. This occurs, in particular, in markets where contracts are awarded via first-price

procurement auctions. When the results of such procurement procedures (bids and bid-

ders identities) are not concealed from non-cartel firms, they may serve as an indication of

the prevailing price level when future contracts are procured for. Consequently, non-cartel

bidders benefit from the protection of the cartel’s inflated bidding, and operate “under the

cartel’s umbrella.” Purchasers from non-cartel bidders will still pay a price that exceeds what

the market price would be in the absence of collusion. In this sense, damages inflicted by

non-cartel bidders broaden the scope of cartel damages. Nonetheless, empirical research in-

vestigating the importance of such damages remains scarce.1 This paper conducts a detailed

study of umbrella damages by examining the bidding behavior of non-cartel bidders facing

the Texas school milk cartel between 1980 and 1992.

Bid-rigging was common in auctions for the supply of milk to schools, at least until

the early 1990s. According to Porter and Zona (1999), investigations were conducted in

more than twenty states across the U.S., more than $90 million of fines were imposed, while

about 90 people were sent to jail for sentences lasting six months on average. The Texas milk

cartel is well-suited for analyzing damages inflicted by non-cartel bidders. First, two essential

conditions are met: the cartel was not all-inclusive, and the auction format was first-price

sealed bid.2 In particular, bids and bidder identities are publicly announced. This public

information enables non-cartel firms to learn and adjust their bids to the supra-competitive

levels sustained by the cartel. Second, all firms involved in the cartel were convicted, which

allows me to isolate non-cartel bidders and focus on their bidding behavior. Third, the

dataset collected by the Antitrust Division of the Department of Justice spans markets with

and without cartel operations: as such, it provides a unique opportunity to document how

non-cartel firms’ bidding behavior is affected by the cartel’s presence.3

Reduced form analysis of the bid data reveals that the largest non-cartel firm bid sig-

1Umbrella damages are discussed in the law and policy literature: see, for instance, Blair and Maurer
(1982) and Blair and Durrance (2018) for the U.S. and Dunne (2014) and Franck (2015) for the E.U. Inderst,
Maier-Rigaud, and Schwalbe (2014) analyze theoretically the size of umbrella effects under various models
of product competition.

2In ascending or second price auctions, bidding one’s private valuation is a dominant strategy irrespective
of the existence of the cartel, therefore, umbrella damages do not arise. For umbrella damages to arise
in first-price procurement auction, non-cartel firms need not know the existence of the cartel per se, only
knowledge of the equilibrium distribution of their lowest competing bid is required to bid optimally.

3In using data from both competitive and rigged markets, I follow previous empirical studies of price-
fixing, e.g., Clark and Houde (2014) and Clark, Coviello, and Shneyerov (2018).
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nificantly less aggressively when facing the cartel, controlling for auction and bidder-specific

heterogeneity. Further investigation of cartel and umbrella damages and inefficiencies re-

quires the estimation of a structural model of bidding in first-price auctions. Economic

damages to the auctioneer are decomposed into (1) cartel damages, defined as the difference

between the actual price paid to the cartel and the counterfactual competitive price that

would have existed in the market had there not been a conspiracy and (2) umbrella dam-

ages, defined as the difference between the actual price paid to the non-cartel firm winning

against the cartel and the counterfactual competitive price.

Because the cartel’s internal structure is unknown, damages are derived assuming two

cases for the cartel mechanism. Either the mechanism is efficient (i.e., the lowest cost cartel

member is the cartel bidder in the target auction), or the mechanism is inefficient (i.e., the

cartel bidder is selected randomly among cartel members).4 I show formally that the efficient

and inefficient mechanisms provide bounds on damages within a simple yet rich class of cartel

mechanisms.

The structural analysis shows that, per contract, umbrella damages (conditional on the

non-cartel firm winning) are at least 35% of cartel damages (conditional on the cartel win-

ning). This lower bound is obtained with an efficient cartel. If the cartel is inefficient,

umbrella damages can be as large as cartel damages. Conditional on the non-cartel firm

winning, prices are inflated by 1.6% to 6.4% relative to the competitive winning bid. These

damages are consistent with the reduced form estimates of a 6.2% overcharge, as well as the

overcharge found by Porter and Zona (1999) for the Ohio school milk market. The results

point to a cartel mechanism that was not entirely efficient, but far from inefficient.5

In this particular setting, partial collusion exacerbates asymmetry among bidders in the

first-price procurement: the cartel bidder has a stronger incentive to inflate its bid above its

cost than the non-cartel bidder. As a result, the winner is not necessarily the lowest cost

bidder and the auction is no longer efficient.6 Inefficiencies due to the asymmetry between

non-cartel and cartel bidders raise the winner’s cost by 5.9% or $2, 337 per contract.

The results are robust to the inclusion of endogenous entry by non-cartel firms in rigged

districts. Indeed, high collusive prices and reduced competition may have attracted entry

by non-cartel firms. A comprehensive damage assessment (in particular, when simulating

4Whereas the definition of an efficient cartel mechanism is straightforward, it is less evident for an
inefficient cartel mechanism. In the inefficient case, the cartel bidder could be randomly selected as is
assumed in this paper. However, one could think of other inefficient mechanisms such as the one in which
the cartel bidder is the least cost-efficient member.

5This is consistent with Pesendorfer (2000) who finds that, although the cartel did not use side-payments,
it managed to retain quasi-efficient collusive rents through market division.

6Demand for milk by schools is inelastic, therefore, any surplus loss stems from the possibility that the
cartel loses when it is the lowest cost provider.
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the counterfactual competitive winning bids) should account for the possibility that non-

cartel firms may not have participated absent collusion. Damage estimates are smaller

when accounting for endogenous entry, but umbrella damages still constitute a significant

and similar fraction of cartel damages as in the baseline model with exogenous entry. The

counterfactual results are also robust to the inclusion of ex-ante asymmetries between firms

(e.g., plant to school district distances, firm capacities) and the use of alternative approaches

to control for auction heterogeneity.

From a competition law perspective, U.S. and European civil courts have historically not

recognized the ability of purchasers from non-cartel firms to pursue colluders for umbrella

damages, one reason being the complexity of proving umbrella claims. This paper sheds

new light on this debate by providing a case study of umbrella damages, emphasizing the

type of data and methodology that renders the estimation of damages possible and far from

speculative. The U.S. and European competition laws have recently taken divergent paths

in their treatment of whether the civil liability in damages of the cartel members extends to

umbrella damages. On June 5th 2014, the European Court of Justice (ECJ) handed down the

awaited judgment in the elevator cartel case (Kone AG and Others v. ÖBB-Infrastruktur

AG), stating the right of plaintiffs to compensation for umbrella damages.7 In its press

release No 79/14, the ECJ states:

[...] where it has been established that the cartel is, in the circumstances of the

case and, in particular, the specific aspects of the relevant market, liable to result in

prices being raised by competitors not a party to the cartel, the victims of this price

increase must be able to claim compensation for loss sustained from the members of

the cartel.

At the same time, the ECJ emphasizes the “high hurdles in terms of the burden of proof

that await” any umbrella claimants.8

In the U.S., competition law is inconsistent in its standing vis-a-vis umbrella claims. The

ability of purchasers from non-cartel firms to recover damages from the conspirators under

section 4 of the Clayton Act is uncertain because of the Supreme Court decision in Illinois

Brick Co. v. Illinois.9 In the case, the Court ruled that indirect purchasers (downstream

buyers) may not sue on a theory that a price-fixing overcharge has been passed on to them by

7The elevator cartel, which involved anticompetitive agreements between major European manufacturers
of elevators and escalators (Kone, Otis, Schindler, and ThyssenKrupp) operated in several European Union
states over many years. The European Commission uncovered the cartel in 2003 and, in 2007, imposed fines
for the elevator cartel’s practices in the Belgian, German, Netherlands and Luxembourg markets.

8Opinion of the Advocate General Kokott.
9Section 4 of the Clayton Act provides that “any person ... injured in his business or property” by an

antitrust violation may bring an action for treble damages.
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intermediate sellers purchasing from upstream colluders. This case was relied on by courts

to deny standing to purchasers from non-cartel firms.10 Again, one of the policy reasons

underlying the Illinois Brick doctrine revolves around the complexity of tracing out the

causal link between the antitrust violation and non-cartel firms’ response.11

This paper shows that, in the particular case of bid-rigging in first-price procurement

auctions, umbrella damages are amenable to estimation from bid data using rigorous econo-

metric techniques.12 Moreover, accounting for non-cartel firms’ best-response to the cartel

is not only necessary to assess umbrella damages, but is in fact crucial to getting a coher-

ent analysis of the (direct) cartel damages inflicted. A partial equilibrium analysis, holding

non-cartel firms’ bid distribution fixed to its pre-collusion level, would most likely result in

incorrect damage assessments.13

From the perspective of economic theory, the optimal level of antitrust damages should be

equal to the net harm caused by the cartel to the rest of society, adjusted by the probability

of detection (Landes (1983), Gavil, Kovacic, and Baker (2002)). Such sanctions would only

deter inefficient anti-competitive behavior (e.g., when the deadweight loss is greater than

potential cost savings brought about by the violation). If the cartel is partial, the optimal

level of damages would include the loss in consumer surplus (i.e., the deadweight loss and the

overcharge on units sold post-collusion) net of the benefit to non-cartel firms: if the latter

are no less efficient than the cartel and there are no diverted sales, the overcharge levied

by non-cartel firms is a pure transfer from consumers and should be excluded from optimal

sanctions. However, in instances where collusion inefficiently divert sales to non-cartel firms,

10Judgments finding in favour of liability: United States Court of Appeals (Seventh Circuit), United States
Gypsum Co. v. Indiana Gas Co., 350 F.3d 623, 627 (2003); United States Court of Appeals (Fifth Circuit),
In re Beef Industry Antitrust Litigation, 600 F.2d 1148, 1166 (1979), State of Washington v. American Pipe
Construction Co., 280 F. Supp. 802 (D. Haw. 1968), Pollock v. Citrus Associates, Inc. 512 F. Supp. 711
(S.D.N.Y. 1981). Judgments finding against such liability include United States Court of Appeals (Third
Circuit), Mid-West Paper Products Co. v. Continental Group Inc., 596 F.2d 573, 597 (1979); United States
District Court (District of Columbia), Federal Trade Commission v.Mylan Laboratories, 62 F.Supp.2d 25,
39 (1999).

11Many states, including California, have enacted Illinois Brick-repealer legislation providing indirect pur-
chasers standing to sue for antitrust violations. See Landes and Posner (1979) for an discussion of the
economic rationale for the Illinois Brick ruling: in particular, concerning the detrimental impact on enforce-
ment by direct purchasers if courts recognize the passing-on defense.

12The estimation approach relies on the structure of the auction game. In other settings, e.g. differenti-
ated Bertrand games, umbrella damages can be estimated using reduced-form (i.e., difference-in-difference)
approaches.

13See Section 2 and footnote 2 for a detailed discussion of why the cartel’s existence need not be common
knowledge for non-cartel firms to best-respond. For the Texas school milk cases, the criminal cases documents
are available and include information about penalties to colluders. Details about damage assessment in the
civil cases are, unfortunately, not available. If the approach followed by Porter and Zona (1999) for the Ohio
milk cases is of any indication, it appears that the overcharge was estimated by comparing bids in collusive
and competitive school districts via reduced-form analysis.
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the cartel should be liable for the overcharge levied on diverted units. In the case of the

school milk market, the combination of asymmetries in costs between cartel and non-cartel

firms and the first-price auction format generates inefficient diversion of sales to non-cartel

firms.

This paper also relates to the debate around auction format choice. A commonly ad-

vanced argument in favor of sealed bid auctions is that open auctions are more susceptible to

collusion because conspirators can immediately punish any deviations.14 This reasoning does

not account for the fact that given partial collusion, the auctioneer will suffer damages of a

greater scope (measured by the number of auctions with an inflated winning bid) in sealed

bid auctions: as non-cartel firms adjust their bidding strategy to the cartel, damages to the

auctioneer extend to contract won by non-conspiring firms. Whereas in ascending auctions,

the auctioneer suffers damages only when the cartel can suppress the second highest bid

(the auctioneer may benefit in some cases from the cartel’s overbidding as found by Asker

(2010)). This work shows that a buyer from non-conspiring firms can suffer damages of a

similar magnitude than if they contracted directly with conspiring firms. The potential merit

of sealed bid relative to open auctions is therefore nuanced with regard to these findings.

The U.S. milk cartels were the subject of various papers in the empirical literature on

bid-rigging. Pesendorfer (2000) examines the Florida and Texas school milk cartels and

shows that the data (in particular market shares and incumbency rates) is consistent with a

strong cartel in Florida (in the sense that side-payments were used between cartel members)

and a weak cartel in Texas (no side-payments). This paper differs from the former in two

dimensions: first, Pesendorder focuses on the Dallas-Fort Worth (DFW) area whereas the

dataset used in this paper includes, in addition, the Waco and San Antonio areas in which,

according to the Department of Justice’s investigation, the cartel was not operating. These

markets provide a set of competitive auctions which are useful to predict counterfactuals.

Second, this paper focuses primarily on outsiders’ response to the cartel’s bidding behavior.

Hewitt, McClave, and Sibley (1996) demonstrate that the high incumbency rates in Texas

(the supplier of a given school district does not change from year to year in many cases)

can only be explained by collusion. Lee (1999) finds evidence of complementary bidding and

high incumbency premia in the DFW school milk market. Porter and Zona (1999) test for

the presence of collusion in the Ohio school milk market by comparing defendants firms in

Cincinnati to a control group of non-defendants and compute estimates of cartel damages.

Lanzillotti (1996) provides a review of U.S. milk cartel cases and shows that several features

of the bids in Kentucky are indicative of collusive behavior.

This paper is more broadly related to the empirical literature on bidding rings. A first

14See the discussion in Athey, Levin, and Seira (2011) for timber auctions.
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strand in the literature focuses on the internal organization of bidding rings. Asker (2010)

studies equilibrium bidding and side-payments in knock-out auctions held privately by the

New York stamp cartel before the actual auction. Kwoka Jr (1997) analyzes bids and side-

payments in knock-out auctions held by a real estate ring.15 A more recent strand of the

literature, closer to this paper, studies the interaction of partial cartels and non-cartel firms.

Clark, Coviello, and Shneyerov (2018) show that a cartel in Montreal’s asphalt market

successfully deterred entry by outsiders (through threats and intimidation). The authors

decompose the effects of bid coordination and entry deterrence on procurement costs and

find that bid coordination dominates. Harrington, Hüschelrath, and Laitenberger (2016)

analyzes how the German cement cartel controlled the expansion of non-cartel supply (from

Eastern European countries) by sharing the collusive rents with German importers. Gabrielli

and Willington (2020) also consider damage assessment under partial collusion in a first-price

auction setting, when the cartel mechanism is known to the econometrician and non-cartel

firms are unaware of the cartel’s existence.16

A second strand in this literature aims at providing econometric tests of collusion. Early

contributions are: Porter and Zona (1993), Baldwin, Marshall, and Richard (1997), and

Bajari and Ye (2003). Recent contributions include: Price (2008), Athey, Levin, and Seira

(2011), Aryal and Gabrielli (2013), Conley and Decarolis (2016), Marmer, Shneyerov, and

Kaplan (2017), Kawai and Nakabayashi (2018), Chassang and Ortner (2019), and Schurter

(2020).

The empirical section of the paper relies on results from the literature on the structural

estimation of auctions. In particular, the non-parametric estimation of the bidders’ under-

lying cost distribution follows the methodology introduced by Guerre, Perrigne, and Vuong

(2000). The empirical section makes use of some of the numerical methods developed in

the computational literature on asymmetric auctions. Recent contributions in this literature

are: Li and Riley (2007), Gayle and Richard (2008), and Fibich and Gavish (2011).

The paper is organized as follows. Section 2 describes the theoretical model. Section 3

presents the school milk market and the relevant factors affecting bidders’ cost structure.

Section 4 describes the dataset. Section 5 examines the largest non-cartel firm’s bidding

behavior through a reduced-form approach, and shows that all else equal, the largest non-

cartel bidder bids less aggressively in school district where the cartel is operating. An

assessment of cartel and umbrella damages is presented in Section 6 using a structural

15Beyond auction markets, studies analyzing explicit collusion mechanisms include Genesove and Mullin
(2001), Röller and Steen (2006), Clark and Houde (2013), Igami and Sugaya (2016), Byrne and De Roos
(2019), and Alé-Chilet and Atal (2020).

16The authors show via simulations that ignoring non-cartel firms’s best-response to the cartel may lead
to a significant downward bias in damage estimates.
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approach. Section 7 concludes.

2 A Theoretical Model

The section presents a model of first-price procurement auctions with asymmetric bidders

and analyzes the effect of collusion, cartel size, and cartel mechanism on the non-cartel firm’s

profits and bidding behavior.

The section builds on the theoretical literature on asymmetric first-price auctions. In

particular, Maskin and Riley (2000) and Lebrun (2006) derive existence and uniqueness

results, as well as comparative statics results for the equilibrium bid functions.17 This

section is also related to the theoretical literature on bidding rings in first-price auctions. In

particular, McAfee and McMillan (1992) characterize the optimal mechanism for strong and

weak cartels, whereas Marshall and Marx (2007) compares first and second-price auction

formats when a cartel is not all-inclusive and may not be able to control the bids of its

members.

The case of a single non-cartel firm is considered for simplicity, and in anticipation of

the empirical part. Throughout the theoretical section, I maintain the assumption that the

existence of the cartel, members’ identities, and cartel mechanism are common knowledge

to all players.18 Nevertheless, in the empirical application, non-cartel firms need not know

of the cartel per se to bid optimally: a non-cartel firm needs to know only the equilibrium

distribution of its lowest competing bid. The cartel having formed at least a decade prior

to the sample period, the assumption that non-cartel firms hold correct beliefs is reasonable

and follows the prior literature.19 Gabrielli and Willington (2020) consider the case where

non-cartel firms have not yet learned of the cartel’s existence.

Risk-neutral firms bid for a single contract in a first-price procurement setting. There

is no reserve price. Denote by 1 the cartel bidder, and by 2 the non-cartel bidder.20 For

i ∈ {1, 2}, firm i’s cost ci is drawn from a distribution Fi with support [c, c]. Fi has a

continuous density fi strictly positive on (c, c]. Cost are drawn independently across bidders

17Other references include Vickrey (1961), Griesmer and Levitan (1967) who study asymmetric uniform
distributions, Plum (1992) who study a class of power distributions and more recently: Bajari (2001) and
Cheng (2006). Athey (2001) derives more general existence results.

18This assumption is used merely to present the optimality conditions as a function of the primitive cost
distributions.

19Court documents indicate cartel activities began as early as 1967. While non-cartel firms could hold
incorrect beliefs, auction outcomes that are stable to learning and are generated by a Bayes-Nash equilibrium
seem more plausible in this empirical setting.

20The cartel bidder is the cartel member selected to bid in the auction on behalf of the cartel. Note that this
setting does not rule out the possibility that other cartel members submit “non-serious” or “complementary”
bids. If that is the case, the non-cartel firm knows that it is facing only one “serious” bid from the cartel.
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and are private.

Denote by βi bidder i’s equilibrium bidding strategy and by φi = β−1
i the corresponding

inverse bid function. Note that if bidder j bids according to φj and bidder i submits a bid b,

then the latter wins if and only if cj > φj(b).
21 Thus, bidder i’s expected profit from bidding

b is given by:

π(b; ci) = (b− ci) Pr(cj > φj(b)) = (b− ci) (1− Fj(φj(b))) (1)

The first-order condition with respect to b (at ci = φi(b)) is:

fj((φj(b))

1− Fj((φj(b))
φ′j(b) =

1

b− ci
with boundary condition φi(c) = c. (2)

Combining optimality conditions for the two bidders, the equilibrium bid functions solve

the following system of differential equations: 1
b−φ1(b)

= f2(φ2(b))
1−F2(φ2(b))

φ′2(b)

1
b−φ2(b)

= f1(φ1(b))
1−F1(φ1(b))

φ′1(b)
(3)

with right-boundary conditions : φ1(c) = φ2(c) = c. Maskin and Riley (2000) show

that inverse bid functions must satisfy the additional condition that the minimum bid of all

bidders is the same: φ1(b) = φ2(b) = c for some unknown b.22

Although analytical solutions of problem (3) are in general not available, one can derive

properties of the equilibrium bid functions. The first property, proved by Maskin and Riley

(2000) (for two asymmetric bidders) and Pesendorfer (2000) (for multiple non-cartel firms

bidding against a cartel), can be used to compare the cartel and non-cartel firms bid func-

tions. Assume that the bidders’ cost distributions can be ordered according to hazard rate

dominance, i.e
f1(c)

1− F1(c)
>

f2(c)

1− F2(c)
for all c (4)

This implies that, conditional on having a cost above c, the cartel bidder is more likely to

have a low cost than the non-cartel bidder.

Proposition 1. Under the hazard rate dominance assumption:

21I assume that the cartel mechanism does not dictate the cartel firm’s bid in the target auction. This
assumption rules out mechanisms where side-payments distort bidding in the target auction, as in the case
studied by Asker (2010). In his study comparing the Texas and the Florida milk cartels, Pesendorfer (2000)
finds evidence consistent with the Texas cartel operating without side-payments. This assumption is further
discussed in Appendix A.3.

22Existence and uniqueness of an equilibrium in strictly increasing strategies was proved by Maskin and
Riley (2000) and Lebrun (1996,1999,2006) among others.
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1. The cartel bidder bids less aggressively than the non-cartel bidder: β1(c) > β2(c) for

all c ∈ (c, c)

2. Denoting by Gi bidder i’s equilibrium bid distribution (and gi the corresponding density

function), the cartel firm’s bid distribution dominates the non-cartel firms bid distri-

bution (in the hazard rate sense): g1(b)
1−G1(b)

> g2(b)
1−G2(b)

Proof. See Propositions 3.3 and 3.5 in Maskin and Riley (2000), remark 3 in Pesendorfer

Pesendorfer (2000), and Krishna (2006).

Part 1 of the proposition implies that the non-cartel firm may win despite not having the

lowest cost among the bidders. This results in an inefficient allocation. Part 2 of the propo-

sition implies that the non-cartel firm’s equilibrium bid distribution first-order stochastically

dominates the cartel firm’s equilibrium bid distribution. As noted by Pesendorfer (2000),

the hazard rate dominance condition will be satisfied for instance when all firms (cartel and

non-cartel firms) are ex-ante symmetric and the cartel mechanism is efficient, i.e when the

cartel bidder has the lowest cost among cartel members. In this case, F1(c) = 1−(1−F (c))n

where F is the ex-ante symmetric distribution of bidders, and n is the number of cartel

members.

Studying the magnitude of umbrella damages requires the comparison of competitive

equilibrium bid functions (i.e., bid functions when the firms do not collude) with the collusive

bid functions derived above.

Denote by n the number of cartel members, or cartel size. For simplicity, assume that

all bidders, whether or not in the cartel, are ex-ante symmetric. In the empirical analysis, I

allow for the possibility that firms differ systematically in their costs of procurement based

on bidder-specific characteristics (e.g., firm size, distance from the school district). All firms

draw their cost from a distribution F with support [c, c]. F has a continuous density f

strictly positive on (c, c]. Under these assumptions, the competitive auction in which firms

do not collude is a symmetric auction with n+1 bidders. This game has a unique equilibrium

in strictly increasing strategies.

Denote by β the symmetric equilibrium bidding strategy, and by φ = β−1 the correspond-

ing equilibrium inverse bid function. In this case, if a bidder’s cost is ci, bidding b yields

expected profits given by:

π(b; ci) = (b− ci) Pr(cj > φ(b),∀j 6= i) = (b− ci) (1− F (φ(b)))n (5)
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The first-order condition with respect to b (at ci = φ(b)) is :

nf(φ(b))

1− F (φ(b))
φ′(b) =

1

b− ci
with boundary condition φ(c) = c. (6)

Let G(b) = F (φ(b)) denote the distribution of a firm’s equilibrium bid. Let g(b) denote

the corresponding density function. As bidders are symmetric, this distribution does not

depend on i. The first-order condition can be rewritten:

ci = b− 1−G(b)

ng(b)
(7)

Equation (7) expresses the individual private cost ci as a function of the individual

equilibrium bid b, and the distribution of equilibrium bid G. This mapping is used for the

structural estimation of the cost distribution F from the observed distribution of bids G (see

Guerre, Perrigne, and Vuong (2000) and step 2 in Section 6.2).

Comparison of the competitive benchmark to the collusive case reveals that the non-

cartel firm’s interim profits (i.e., expected profits conditional on its cost) always increase

when its competitors collude. Additionally, the magnitude of damages depends on the cartel

mechanism: in particular, bounds on damages can be derived under an efficient and inefficient

cartel for a rich class of cartel mechanisms. The detailed statements and proofs of these

results along with comparative static results for the cartel size and mechanism are presented

in Appendix A.

3 The School Milk Market

Most public school districts in Texas use procurement auctions to allocate contracts for

the supply of school milk. Every year, between May and August, each district organizes

a first-price procurement auction. To sollicite bids, a school district’s food service director

publishes a legal notice of “invitation-to-bid” that is shared with prospective dairy firms in

the area. The notice includes information on the time and place to submit the bids and the

contract specifications. Firms who want to bid on the contract prepare their bid sheets and

deliver the sealed bids at the specified time and place.23 Bids are opened and the amounts

and bidders identities are publicly announced on the spot (Lanzillotti (1996), Scott (2000)).

School district vary in contract characteristics, such as the estimated quantities of milk

to supply, the number of delivery points, the contract period, the delivery times, etc. Dairy

23Bidders have to sign a non-collusive affidavit, stating that they did not partake in any communication
with other bidders regarding prices or participation and that they will not give or receive any side-payments.
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firms have to deliver packaged milk to various customers (e.g., retail stores, government

agencies, and schools). Retail stores are the primary revenue source for distributors. School

milk contracts typically form 10% to 20% of a distributors’ revenue.

By nature, the school milk market is remarkably susceptible to collusion. Firms compete

only on prices as the terms of the contract (quantity and quality) are fixed and the product

is homogeneous. There are many small contracts to be gained facilitating market division.

Bids and bidders’ identities are publicly announced, which helps to detect price cuts by cartel

members and increases the transparency of prices. Firms frequently interact as auctions are

not held on the same day, which permits retaliation in case of cheating. The demand for

milk is inelastic, so price-increases will yield higher profits and are unlikely to face any buyer

resistance. Finally, the market is relatively concentrated, helping coordination.

Some of the aforementioned market features also enable potentially large umbrella dam-

ages. Indeed, these damages stem from non-cartel firms adjusting their bidding behavior to

the supra-competitive levels sustained by the cartel (which also best-responds to non-cartel

firms). This adjustment is feasible because all bids and bidders’ identities are publicly an-

nounced, which results in non-cartel firms learning the price level in the rigged districts and

adapting to it.24 The latter channel is reinforced by the high frequency of interactions, due

to the large number of contracts every year.

Next, the cost structure of milk processors is described. In anticipation of the structural

analysis, it is useful to decompose a milk processor’s cost for a specific contract into:

1. A component common to all firms bidding for a contract: this component depends on

auction characteristics (e.g., quantity of milk to supply, the number of deliveries per

week, etc.). Additionally, the common cost component depends on the price of raw

milk, which is regulated by federal order, as well as processing, packaging and labor

costs which, according to industry experts, are constant across firms in the market.25

2. An idiosyncratic component specific to the firm: this cost component depends on the

distance between the firm’s processing plant and the school district.26 The idiosyncratic

component also depends on the firm current capacity utilization. If the firm is near

capacity, winning a new contract may signify employing an additional truck and driver,

24Non-cartel firms need not know the identities of other competitors and the existence of the cartel to bid
optimally: best-responding requires only knowledge of the distribution of the lowest competing bid.

25A federal milk order sets a uniform minimum price for raw milk in the area. This price is typically
increasing in the distance from the Midwest. In this paper, the marketing area is the Texas Milk Marketing
Order. Within the marketing area, prices differ by a fixed proportion from one zone to the other. The price
of raw milk is around 7 cents per half-pint.

26The plant to school district distance is a proxy for the true transportation cost, which depends on how
close the school district is to the firm’s distribution route. The distribution route depends on the firm’s
current portfolio of clients (e.g., government agencies, military bases, retail stores, and schools).
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which largely increases the cost of fulfilling the contract. Finally, idiosyncratic costs

include a firm’s efficiency in packaging, loading trucks, and managing the machinery.

A description of the conspiracy, as well as the main actors in the industry, is provided

next. In 1992 and 1993, nine milk processors accused of collusion in the DFW market area

settled with the State.27 The cartel included the leading suppliers with plants in the DFW

market area: Borden, Foremost, Schepps, Cabell, Oak Farms, Metzger, Vandervoort, Gandy,

and Preston. Indictments suggest that collusion began at least as early as 1967.28 The cartel

went through the following structural changes: in 1983, Borden acquired Metzger; in 1985,

Preston entered the school milk market and joined the conspiracy; in 1986, Schepps acquired

Foremost; in 1990, Cabell acquired Oak Farms.

Pure Milk Co. is the largest non-cartel school milk supplier in the dataset. The firm’s

main plant was located in Waco, TX (i.e., in a different federal order zone than the DFW

cartel). The company was founded in the 1960s and was successful in establishing a strong

local customer base in Central Texas by marketing higher quality dairy products. Its main

raw milk supplier was Dairy Farmers of America, a national milk marketing cooperative.

School contracts made up to 20% of the firm’s business.

Although Pure Milk bid primarily for contract near its plant in the Waco market area,

it also participated in a non-negligible number of auctions for school districts in the DFW

market area. According to the General Manager of the firm at that time, these were typically

larger contracts justifying “going the extra mile.” In these occasions, Pure Milk bid against

the cartel. The paper focuses on these contracts in which Pure Milk bid in districts where

the cartel was operating. Pure Milk’s location further from the epicenter of the conspiracy

may have played a non-negligible role in it not being part of the cartel. Most of its business

was conducted in the Waco market area, whereas the cartel was only active in DFW.

4 The Data

The paper studies school-milk contracts awarded annually between 1980 and 1992 in three

market areas in Northeastern and Southern Texas: Dallas-Fort Worth (DFW), Waco and

San Antonio. Contracts are awarded at the school district level. Figure 1 shows the counties

in the dataset by market area. Each school district contains around four to five schools.

Initially, the dataset contains information on 1, 620 auctions, 4, 444 bids.

27As in Pesendorfer (2000), collusion is thought of as an explicit or implicit scheme designed to limit
competition and increase profits.

28United States v. Borden Inc., (Northern District of Texas, Case 3:93-CR-047-D).
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The main dataset is the auction data. This dataset was collected by the Antitrust Division

of the U.S. Department of Justice during its investigation of the Texas milk cartel. For each

contract awarded, the following characteristics are observed: the county and school district

awarding the contract, the identity of the bidding firms and corresponding bids for each

milk category (whole white, whole chocolate, low-fat white, low-fat chocolate, skim milk),

the quantities required per milk category, whether a cooler has to be provided, the number

of meals served in the school district, the school district enrollment, the number of deliveries

per week, the number of schools in the district, whether a bid was fixed or escalated, and

the identity of the winner.29

Three auxiliary datasets complement the auction data. Two are obtained from the U.S.

Department of Agriculture’s Marketing Service.30 First, a dataset on prices of Class I fluid

milk for the period of interest.31 This is the price of raw milk sold by milk cooperatives (such

as Dairy Farmers of America) to milk processors and distribution firms. Prices differ from

one region to the other within the Texas Milk Marketing Order. Second, a dataset giving

the processing plant-locations of the firms bidding for the school milk contracts. Third, the

longitudes and latitudes of school districts are added to the main auction data.

The reduced form and structural analysis are conducted on the data after the following

preparation. Auctions with more than one winner are dropped (33 out of 1, 620). Auctions

with only one participant are dropped (514 out of 1, 620).32 Prices are deflated using the CPI

deflator into 1982 dollars. Finally, a distance variable is constructed for each observed bidder-

auction pair: this variable measures the great-circle distance between the school district and

the bidder’s closest plant. The variable is constructed using the latitude and longitude

coordinates of firms’ plants and school districts. Auctions missing information on quantities

or other relevant contract characteristics are dropped (39 out of 1, 620). After this procedure,

the dataset contains information on 1, 034 auctions, 3, 493 bids.

Table 1 shows that the majority of firms win between 20% and 30% of auctions in which

they participate. Borden and Oak Farms are the largest firms by number of contracts

won over this period. Pure Milk (the largest non-cartel firm) is in the second-tier of the

distribution. It won 28% of the contracts on which it bid.

29Escalated bids are indexed to the price of raw milk, to ensure the milk supplier against potentially large
fluctuations of the price of raw milk over the contract period.

30The Southwest Market Area (Federal Milk Order 126).
31Class I Milk is raw milk destined to be used as a beverage, in opposition to milk processed into yogurts,

cheese, etc.
32Without a public reserve price, modelling a one-bidder auction would require information on bidders’

perceived probability of their bid being rejected. Rejections are, however, rare in the data (8 bids are
rejected in total). Note that a model with endogenous entry–in which potential entrants mix in their entry
decisions–can generate one-bidder auctions. This possibility is discussed in details in Section 6.4.
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Table 2 gives summary statistics by market area. Over the period of interest, 722 con-

tracts were awarded in Dallas-Fort Worth, 143 in San Antonio, and 169 in Waco. Only 15

school districts awarded contracts in San Antonio, against 30 for Waco. Indeed, school milk

contracts in San Antonio are for larger quantities. The average winning bid (for a half-pint

of whole white milk) is greater in DFW, followed by San Antonio, and lastly Waco. The

average cost of a contract is the highest in San Antonio, reflecting again the larger size of

contracts. The average contract cost in DFW is $85, 182 against $18, 780 in Waco. This cost

difference reflects differences in contract sizes, raw milk prices, contract specifications across

the two market areas but is also potentially related to inflated cartel prices in the DFW area.

5 Reduced Form Analysis

In this section, the bidding behavior of the largest non-cartel bidder (Pure Milk Co.) is

examined. The analysis suggests that Pure Milk bid significantly less aggressively when

facing cartel bidders and enables a preliminary assessment of the overcharge.

Pure Milk’s processing plant is located near the city of Waco, in McLennan county. The

firm bid primarily in McLennan and neighboring counties (see Figure 1). However, the

firm also participated in auctions in counties located in the cartel area of activity (DFW).

Auctions in which Pure Milk bid are divided by counties into two separate types:

• Collusive auctions: school districts located in counties contiguous or close to Dallas-

Fort Worth in which the cartel presence was established by the Department of Justice.

The counties are Comanche, Dallas, Erath, Hood, and Johnson. Such auctions form

around 10% of Pure Milk’s bids.

• Competitive auctions: school districts located in counties outside the Dallas-Fort

Worth cartel territory (either in the Waco or San Antonio market areas). The counties

are Bell, Bosque, Comal, Coryell, Falls, Hill, Limestone, and McLennan.

This classification is based on the factual statement of the milk cartel prosecution. It is

assumed that the cartel bid in the collusive counties, whereas all firms bid competitively in

the competitive counties. Appendix D performs two econometric tests comparing collusive

and competitive auctions, and provides evidence that this assumption is supported by the

data.

The logarithm of Pure Milk’s bid for whole white milk is regressed on the variables listed

in Table 3. All continuous variables are in logarithm.33 Quadratic terms for the number of

33The log-log specification allows the interpretation of coefficients as elasticities. Additionally, because
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meals and distance are included. In the first specification, no fixed effects are used. In the

second specification, year fixed effects and dummy variables for “collusive” and “competitive”

counties are used. In the third specification, year fixed effects and county dummy variables

are used. Regression results are presented in Table 4.

Table 4 shows that bids move closely with the price of raw milk. As expected, escalated

bids are lower than fixed bids (because they are indexed to the price of raw milk and therefore

shield bidders against future fluctuations of their input price). Bids are increasing in the

number of schools to supply within the district. Bids are decreasing in the number of bidders.

In specifications (2) and (3), bids are increasing and convex in the number of meals served

(equivalently in the quantity of milk to supply). In specifications (2) and (3), bids are concave

in the distance between the processing plant and the school district. Distance increases the

cost of fulfilling a contract, but with diminishing effects.34

The results provide suggestive evidence that Pure Milk bid less aggressively when fac-

ing the cartel. Pure Milk bid on average 6.2% higher in the collusive auctions (facing the

cartel) relative to the competitive auctions. Specification (3) breaks down the effect at the

county level. As shown in Figure 2, the majority of coefficients are positive (and statistically

significant) in collusive counties, whereas the coefficients are negative (and statistically sig-

nificant) in counties with competitive auctions. All coefficients are measured with respect

to the average bid in Bell county (competitive auction).

The set of collusive auctions may be selected and, therefore, not comparable to compet-

itive auctions. Indeed, collusive auctions may differ from competitive auctions based (1) on

contract characteristics or (2) on Pure Milk’s cost conditional on entering the auction (that

is, if entry were endogenous).35

With respect to the first source of selection, the previous analysis controls for a rich

set of observable auction characteristics, in particular the plant-school district distance and

contract size. To check the robustness of the results to the functional form, I estimate the

effect of facing the cartel on Pure Milk’s bidding using nearest-neighbor matching (Abadie

and Imbens (2006); Abadie and Imbens (2011)). For each collusive auction, Pure Milk’s bid

is compared to an average of bids submitted in similar competitive auctions (in practice, I

match with 4 nearest neighbors; matching is with replacement). Similarity between auctions

is based on a weighted function of the auction characteristics in Table 3. For the binary

bids are positive, errors are positively skewed. By logging the observed variable, errors are made more
symmetric.

34Distance is statistically significant only when year FE are included. This is due to the fact that, in the
data, Pure Milk’s bids (in 1982 $) follow a negative time trend whereas the average plant-school district
distance increases over time.

35If Pure Milk’s probability of entry is higher in collusive auctions, its expected cost (and bid) conditional
on entry could be higher in collusive auctions.
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outcomes (e.g., escalated, cooler, etc.), exact matching is imposed. The nearest-neighbors

overcharge estimate (6.8%, with a 0.04 robust standard error) is similar in magnitude to the

baseline regression, although only significant at the 90% confidence level.36

With respect to the second source of selection, I carefully consider the applicability of

selective entry to this setting in Section 6.4 and find that the data does not support selection

into auctions based on costs.

The reduced-form approach is limited if one is interested in the magnitude of umbrella

damages relative to cartel damages, or in assessing the size of inefficiencies introduced by

the cartel agreement. Therefore, more structure is imposed on the data. This structure is

derived from the theoretical model of Section 2. The next section shows how the structural

model and the bid data can be used to simulate counterfactual bids and assess cartel and

umbrella damages.

6 Structural Analysis

In this section, bidders’ underlying cost distributions are estimated from the bid data. These

estimates are used to simulate a set of counterfactual auctions and assess, first, the size of

damages caused to school districts by the outsider firm when facing the cartel, and second,

inefficiencies in contract allocation caused by asymmetries between cartel and non-cartel

bidders. Before presenting the details of the estimation approach and counterfactual results,

the next subsection discusses practical issues in selecting the sample of auctions used for

estimation.

6.1 Practical Considerations

Although the dataset used is rich in many dimensions, not all auctions at hand can be used

to estimate firms’ underlying cost distribution. The structural model developed in Section

2 requires (at least) two firms bidding non-cooperatively in each auction. Based on the list

of firms prosecuted by the Department of Justice, all firms with plants located in the DFW

area were colluding for contracts in that area. As a consequence, the majority of bids for

auctions in DFW (in which all participants were cartel members) were either (1) a winning

bid submitted by the cartel bidder or (2) cooperative “phony” (or “complementary”) bids

36Following Abadie and Imbens (2006); Abadie and Imbens (2011), five observations with extreme propen-
sity scores are dropped (p < 0.1 or p > 0.9)) to ensure overlap and I correct for large-sample bias in the
matching estimator (due to the presence of continuous matching variables). Alternatively, I implement
a propensity score matching estimator (Abadie and Imbens (2016)), which yields an overcharge of 6.9%
estimated with a 0.036 robust standard error.
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submitted by other cartel bidders. The structural model cannot be used to infer underlying

costs from these bids, as they do not necessarily map to a firm’s true cost.37

A natural way to circumvent the previous issue would be to restrict the sample to the

subset of collusive auctions in DFW in which the outsider firm bid against the cartel. Un-

fortunately, two reasons make this alternative unappealing.

First, the cartel mechanism (i.e., how the cartel bidder is selected) is a priori unknown.38

Even if the cost distributions for the outsider and cartel bidder are recovered, the cost

distribution of other cartel members cannot be recovered without knowledge of the cartel

mechanism. As a consequence, the counterfactual competitive auction, in which all cartel

members bid non-cooperatively, cannot be simulated.39 Second, the small sample size of this

set of auctions (in which the outsider bids against the cartel) renders any non-parametric

estimation of the distribution of costs unavailable.40

In the preferred approach, auctions from the two other market areas in the dataset (Waco

and San Antonio) are used. As no firm was prosecuted in counties around Waco and San

Antonio, I assume that firms were bidding competitively in these counties (denoted hereafter

“competitive” auctions). The set of competitive “normalized” bids (i.e., controlling for

differences in contract characteristics) can be used to recover the distribution of “normalized”

costs. Using the estimated distribution of costs, I simulate counterfactual bids by solving

the asymmetric auctions in which the outsider firm bids against the cartel, for two polar

choices of the cartel mechanism (efficient cartel or inefficient cartel). Appendix A.3 shows

that these two choices provide bounds on damages within a rich class of cartel mechanisms.

The main identification assumption is that, conditional on contract and bidder specific

characteristics (contract observables, plant to school district distance, etc.), the idiosyncratic

cost distribution of a given firm is identical in competitive and collusive markets: a firm’s cost

distribution does not depend on whether it is colluding or bidding competitively. Under this

assumption, bids submitted in competitive auctions can be used to infer firms’ underlying

cost distributions and simulate outcomes in rigged school districts.

Advantages of this approach are twofold. First, estimation of the cost distribution does

not hinge on the correct specification of the cartel mechanism. Indeed, costs are obtained

37In auctions where all bidders are cartel members, the cartel bidder likely chooses the highest mark-up
possible without raising suspicion, inducing defection, or entry by additional firms. Without knowing the
cartel’s beliefs about these threats, one cannot confidently map the cartel winning bid to its underlying cost.

38Pesendorfer (2000) finds evidence that the Texas cartel was quasi-efficient even though side-payments
were not used, by comparing it to the Florida cartel which was efficient.

39One could assume a mechanism for the selection of the cartel bidder, and estimate underlying costs
from observed bids. However, if the mechanism is misspecified, this approach will lead to biased estimates
of underlying costs.

40The outsider firm bid against the cartel in 33 auctions.
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from competitive auctions in which all firms bid non-cooperatively. Second, the cost dis-

tribution is estimated non-parametrically, as the sample size of competitive auctions allows

it.41

A drawback of this approach is that it does not recover the specific cost corresponding to

observed bids for collusive auctions in which the outsider participates. Instead, it computes

upper and lower bounds (assuming an inefficient and efficient cartel mechanisms respectively)

on damages using (1) the (normalized) cost distribution estimated from the set of competitive

auctions and (2) auction observed characteristics drawn from collusive auctions in which the

outsider participates. Moreover, this approach assumes that the distribution of firm-specific

(normalized) costs is identical in competitive and collusive districts.

6.2 Estimation Approach

The following assumptions are imposed in the baseline estimation approach. Denote by xd

a vector reporting auction d’s observed characteristics (such as the quantity to be supplied,

whether bids can be escalated, number of deliveries per week, number of schools in the

district, date, etc.).

Assumption 1 (Multiplicative Separability). Bidder i’s cost in auction d, denoted cid, can

be written:

cid = c̃idΓ(xd)

for some function Γ(.). c̃id represents bidder i’s idiosyncratic (“normalized”) cost in auction

d, which is independent from xd.

Assumption 2 (Symmetric IPV). Idiosyncratic costs c̃id are symmetric (identically dis-

tributed according to the distribution F ), independent, and private across firms, school dis-

tricts, and time.

Section 6.4 relaxes the symmetry and multiplicative separability assumptions. The steps

followed in the estimation are described below.

• Step 1: Observed auction heterogeneity

The estimation procedure assumes that the data available is from auctions of ex-ante

identical contracts. This assumption is not valid for school milk contracts. Indeed,

contracts differ in various dimensions, which are public information and observed by

41This approach relies on data from competitive auctions being available. Such data would typically be
available at the time when the distinction between cartel and umbrella damages is most relevant, i.e., when
assessing liability for damages. By this stage in the investigation, the antitrust agency would have used its
expertise and potential leniency offers to identify the extent of the cartel’s operations.
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the bidders before submitting their bids. This public information will enter not only

a bidder’s private cost of realizing the contract but also its belief about other bidder’s

costs.

There are several possible ways to account for observed auction heterogeneity. In

the baseline estimation, I follow the approach of Balat et al. (2016) and explores

alternatives in Section 6.4.42 The latter paper shows that separability (Assumption 1)

of idiosyncratic costs and auction characteristics carries out to bids.

Lemma 1. Assume the multiplicative separable structure (Assumption 1), the equilib-

rium bid function has the multiplicative separable form:

β(cid) = β(c̃id)Γ(xd)

This result can be used to account for observed auction heterogeneity and homogenize

the bids. Assume the following parametric specification: Γ(xd) = exp(x′dα). The

first-stage regression is:

ln bid = x′dα + ηt + κi +
6∑

n=2

1(nd = n)δn + σid (8)

where bid denotes the bid of bidder i for contract d, ηt is a time-specific dummy, κi is

a bidder-specific dummy, nd is the number of bidders participating in contract d, and

σid is the error term.43 xd include variables for the price of raw milk, the number of

meals served (and its square), whether bids are escalated, whether a cooler has to be

provided, the number of deliveries per week, and the number of schools in the school

district. All continuous variables are in logarithm. Time dummies capture seasonality:

for instance, common packaging, processing, and labor costs, that might change over

time but are common to all bidders.

The first-stage regression is run on the sample of competitive auctions from the Waco

and San Antonio market areas, in which all firms bid non-cooperatively.

42See Haile, Hong, and Shum (2003) for an early version of the paper.
43A natural concern with including the variable nd arises if there are auction characteristics that are

observed by the bidders prior to making their entry decision but not accounted for in the data. To explore this,
I experiment with two alternative specifications for Equation (8): (1) the baseline specification conditional
on nd (OLS on the subsample of auctions with nd = 3), (2) instrumenting nd by the number of potential
entrants (see Section 6.4 for details). The specifications for bid homogenization lead to similar distributions
of normalized bids (see Figure 3 for kernel density estimates) and do not, ultimately, affect the damage
assessment estimates.
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Normalized bids are constructed from the results of regression (8), as ln b̃id = ln bid −
x′dα̂− η̂t.

As equilibrium bid functions depend on the number of bidders participating in the auc-

tion, the rest of the estimation (in particular, when inverting the first-order condition)

is conducted on auctions fixing the number of participants to three bidders. Section

6.4 discusses results for auctions with more than three bidders. In particular, Section

6.4 allows the number of cartel bidders (and therefore the distribution of the efficiently

selected cartel bidder) to vary across auctions.

• Step 2: Estimation of the underlying cost distribution

Following the procedure presented in Guerre, Perrigne, and Vuong (2000), the under-

lying distribution of costs can be estimated using the distribution of normalized bids,

obtained in the previous step, by inverting the first-order condition.

Cumulative distributions are estimated using the empirical distribution function and

the densities are estimated following the boundary-corrected approach of Hickman and

Hubbard (2015).44 This step also recovers the equilibrium bid function in competitive

auctions under Assumption 2.

• Step 3: Derivation of the equilibrium bid functions in collusive auctions

As shown in Section 2, the cartel bidder and non-cartel firm equilibrium inverse bid

functions, denoted φ1 and φ2 respectively, are the solutions of: 1
b−φ2(b)

=
f1(φ1(b))φ′1(b)

1−F1(φ1(b))

1
b−φ1(b)

=
f2(φ2(b))φ′2(b)

1−F2(φ2(b))

(9)

where Fi (resp. fi) is the cumulative distribution (resp. density function) of costs of the

cartel bidder (i = 1) and the outsider firm (i = 2). Along with the boundary conditions

φ1(b) = φ2(b) = c (lower bound of support of bids) and φ1(c) = φ2(c) = c, the system

(9) forms a nonlinear boundary value problem (BVP), in which the location of the

left-boundary b is unknown. In addition to this latter “non-standard” feature, the

numerical resolution of the BVP is further complicated by the fact that the mapping

M in (φ′1(b), φ′2(b)) = M(b, φ1(b), φ2(b)) is not Lipschitz-continuous in (φ1(b), φ2(b)) at

the right boundary c.

44This approach is based on the contributions of Zhang, Karunamuni, and Jones (1999) and Karunamuni
and Zhang (2008). Pinkse and Schurter (2019) discusses issues with the assumptions on the necessary number
of derivatives at the boundary and the choice of the first bandwidth parameter.
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The BVP defined in equation (9) cannot be solved analytically. However, several nu-

merical solutions have been proposed in the literature: the backward-shooting method

was first used to solve this problem by Marshall, Meurer, et al. (1994) and used and

refined in various subsequent papers.45 Although this method is currently the standard

for computing equilibrium bids in asymmetric auctions, it suffers from large instability

at the right boundary (see Fibich and Gavish (2011) for a detailed analysis). As a

consequence, an alternative numerical method, proposed in the latter paper, is pre-

ferred. Their idea is to recast the BVP as a system of differential equations in φ1 and

b (instead of φ2) as functions of φ2. This allows to transform the BVP with unknown

left boundary into a BVP with known boundaries, and apply standard numerical tech-

niques such as fixed-point iteration on a grid. The details of their numerical method,

adapted to this setting, are presented in Appendix B.

As the cartel mechanism is unknown (regarding how the cartel bidder is selected for a

given target auction), two extreme cases for the cartel internal mechanism are consid-

ered. These two scenarios provide upper and lower bounds on damages within a rich

class of possible cartel mechanisms. Appendix A.3 provides a formal proof of this re-

sult. The intuition for the result is as follows. As the cartel mechanism becomes more

“efficient” (in a sense that I make precise in Appendix A.3), the non-cartel firm faces a

stronger cartel bidder and bids more aggressively. Additionally, the cartel bidder’s bid

distribution shifts to the left (i.e., becomes stochastically dominated). The combined

effect is that procurement costs and damages decrease overall and conditional on the

non-cartel firm winning against the cartel.46

Under an efficient cartel mechanism, the cartel selects its lowest cost member to bid

on behalf of the cartel at the auction. Let F denote the true distribution of costs for

each bidder. Then the cost distributions of the non-cartel firm and the cartel bidder

are:

F1(c) = 1− (1− F (c))n F2(c) = F (c) ∀c ∈ [c, c]

where, in the current application using three-bidder auctions, n equals two.

Under an inefficient cartel mechanism, the cartel bidder is selected randomly among

45Gayle and Richard (2008) use local Taylor series expansions of the solution and the distribution and Li
and Riley (2007) use an adaptive step size for the numerical backward integration to allow better control of
the error.

46Whereas the definition of an efficient cartel mechanism is straightforward, it is less evident for an
inefficient cartel mechanism. In the inefficient case, the cartel bidder could be randomly selected as is
assumed in this paper. However, one could think of other inefficient mechanisms such as the one in which
the cartel bidder is the least cost-efficient member. Appendix A.3 discusses reasons why the former definition
of an inefficient cartel is more plausible than the latter in this particular application.
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cartel members. Then the cost distributions of the non-cartel firm and the cartel bidder

are:

F2(c) = F1(c) = F (c) ∀c ∈ [c, c]

Estimators of (F1, F2) are constructed from the non-parametric estimators of F ob-

tained in Step 2. Given these estimates, the BVP is solved using a fixed point iteration

algorithm. The result of the numerical method are estimators of the true asymmetric

equilibrium inverse bid functions: φ̂1 and φ̂2.47

The equilibrium bid functions are numerically obtained assuming common knowledge

of the cartel mechanism and cartel members (as evident in the system of differential

equations). It is worth noting that, in practice, Pure Milk need not know of the

cartel’s existence or members’ identities per se to bid optimally: only knowledge of the

equilibrium distribution of its lowest competing bid is required. Given that the cartel

formed at least a decade prior to the sample period, it is reasonable to assume that

auction outcomes are generated by a Bayes-Nash equilibrium that is stable to learning

and in which the non-cartel firm holds correct beliefs (Pesendorfer (2000) makes a

similar assumption).

• Step 4: Damage Assessment

Given estimates of the distribution of interest, I simulate L three-bidder auctions by

(1) drawing costs from the estimated cost distribution, (2) constructing the corre-

sponding bids in the competitive auction and collusive auctions under the two cartel

mechanisms, (3) reincorporating observed auction heterogeneity by drawing from the

empirical distribution of auction characteristics in cases where the outsider firm bid

against the cartel.

Estimates of damages are constructed by comparing the set of simulated competitive

winning bids and corresponding counterfactual set of collusive winning bids where the

non-cartel firm faces the cartel. Expected damages are obtained by averaging damages

over the L simulated auctions (in practice, L = 5, 000). Estimates of efficiency losses

are constructed by comparing the winner’s cost in the competitive and corresponding

collusive simulated auctions and averaging the differences across the L simulations.

47In the inefficient cartel case, the auction is symmetric and a closed-form solution for the equilibrium bid
function is available.
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6.3 Assessment of Damages and Inefficiencies

This section presents the results of the counterfactual analysis. Figure 4 shows the estimated

bid functions in the case of three-bidder auctions.48 Each panel shows the bid function in

the competitive auction, along with the counterfactual outsider and cartel’s bid functions

in the case of an efficient cartel mechanism (left panel), and an inefficient cartel mechanism

(right panel). In both cases, the collusive bidding functions lie above the competitive bidding

function as both the cartel bidder and the outsider bid less aggressively. The mark-up above

the competitive bid increases the smaller is the bidder’s cost. The non-cartel firm’s mark-up

when the cartel is inefficient is larger than when the cartel is efficient (this is consistent with

the theoretical results of Appendix A.2).

Estimates of damages to the auctioneer (school district) correspond to the difference

between the winning bid of the collusive auction in which the outsider firm bids against the

cartel and the winning bid of the competitive auction in which all firms bid non-cooperatively.

Cartel damages are the typical damages antitrust authorities aim to assess, that is, for

auctions won by the cartel. Umbrella damages, on the other hand, are computed for auctions

where the outsider wins against the cartel.49

Table 5 presents damage estimates obtained from the structural analysis. The mean

damages per contract in the whole white milk category are between $399 and $862.50 If the

same overcharge were applied to all milk categories, damages per contract would be between

$1, 188 and $2, 638.51 For auctions won by the outsider, the collusive winning bid is 1.6% to

6.4% above the competitive winning bid, depending on the cartel mechanism. As a fraction

of the winning competitive mark-up, these damages are between 23% and 62%. For auctions

won by the cartel, damages are between 4.9% and 6.4% of the competitive winning bid, or

between 55% and 62% of the competitive winning mark-up.

Inefficiencies introduced by the (efficient) cartel mechanism are measured by the difference

in the winner’s cost in the competitive and collusive auctions. These two costs differ when

the outsider firm wins the collusive auction, while the cartel would have won the competitive

auction. Inefficiencies amount to an increase of 5.9% of the winner’s cost, equaling $2, 337

48Normalized bid functions β : c̃id 7→ β(c̃id) are represented.
49Umbrella damages (resp. cartel damages) are computed conditional on the outsider (resp. the cartel)

winning the collusive auction.
50I focus on the whole white category because it is the most frequent category. Other milk categories,

such as whole chocolate, are only part of a subset of contracts.
51This calculation is valid if, for a given total bid (inclusive of quantities), bids per half-pint by category

are determined by applying the same mark-up over costs per half-pint for all milk categories. This pricing
rule seems more reasonable than alternatives, for instance, a mark-up imposed on a subset of categories
while the remaining categories are priced at cost.
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per contract.52

Umbrella damages form a non-negligible fraction of cartel damages. Per contract, um-

brella damages (conditional on the outsider winning) are estimated to be at least 35% of

cartel damages (conditional on the cartel winning). This lower bound is obtained with an

efficient cartel. If the cartel is inefficient, umbrella damages are as large as cartel damages.

The estimates found for umbrella damages as a fraction of the competitive winning bid,

between 1.6% and 6.4%, are of similar magnitude as the overcharge of 6.2% estimated in the

reduced form section, as well the overcharge found by Porter and Zona (1999) for the Ohio

school milk market.

6.4 Modeling Alternatives and Extensions

The econometric model estimated and the results reported above rely on maintained as-

sumptions 1 and 2. In this section, I relax these assumptions and incorporate endogenous

entry into the baseline model.

Asymmetries between bidders and observed auction heterogeneity. A bidder’s idiosyncratic

cost of serving a given school district is affected by several bidder-specific factors: the dis-

tance between its closest processing plant and the school district, the bidder’s capacity (e.g.,

trucks and drivers), and the bidder’s efficiency in packaging, loading trucks, managing the

machinery. Idiosyncratic costs are private to each bidder, as they do not affect its competi-

tors’ costs. Moreover, these factors are independent across bidders.

Several bidder-specific factors are, however, public information and create ex-ante asym-

metries across bidders. For instance, bidders (plants) located near a given school district

are likely to have lower transportation costs and, hence, lower costs of fulfilling the contract;

moreover, firm size may affect efficiency. Table 1 shows large differences in the number of

auctions bidders participate in and win. Some firms such as Borden and Oak Farms are

national with a large distribution network, whereas others, such as Pure Milk, only operate

in parts of Texas.

In this section, I allow for the possibility that firms differ systematically in their costs of

procurement based on their plant-to-school district distance and capacity. A firm’s capacity

is defined as the maximum total dollar value won by the firm in a year (including both

rigged and competitive school districts). For each auction, bidders are classified into three

types: small firms located near the school district, large firms located near the school district,

52If the cartel is inefficient, misallocation can arise. However, this is due to the random selection of the
cartel bidder rather than asymmetries between bidders. If a cartel member would have won the competitive
auction and is not selected as the cartel bidder, there will be a loss of efficiency. This type of misallocation
is left aside as it is not stemming from asymmetries.
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and large firms located far from the school district.53 I use different thresholds for distance

(30 to 80 miles by 10-mile increments) and firm size (25th, 50th, and 75th percentiles of the

distribution of capacities by year).

Additionally, observed auction heterogeneity is controlled for using an alternative ap-

proach (Step 1).54 I assume that the log of bidder i’s bid in auction d, denoted ln(bid), is

normal with mean and variance given by

E [ln(bid)|xd,nd] = [xd,nd]
′ αk(i,d) (10)

Var [ln(bid)|xd,nd] = exp
(
z′dδk(i,d)

)2
(11)

where zd is a subset of contract characteristics entering xd, k(i, d) is bidder i’s type in

auction d, nd = (n1, n2, n3) are the number of bidders by type.55

I specify the mean of log bids as a linear function of all contract characteristics entering

xd and include year dummies and dummies for the number of bidders by type. I allow the

effects of most of these covariates to differ by bidder type. The variance of log bids depends

on variables zd capturing contract size (number of meals and number of school in the district)

and the bidder’s type. The coefficients αk(i,d) and δk(i,d) are estimated by maximum likelihood

using the sample of competitive auctions (San Antonio and Waco market areas).

For each draw of (xd,nd), I follow the rest of the estimation approach of Section 6.2 (steps

2, 3, and 4), allowing cost distributions to differ by bidder type. To simulate the counter-

factual collusive auctions, auction characteristics xd are drawn from the set of auctions in

which Pure Milk bid against the cartel. Additionally, I assume that there is one outsider

(the bidder with the weakest type) whereas all remaining firms collude efficiently.

Table 6 (Panel A) presents damage estimates (as a fraction of the competitive winning

bid) averaged over auctions (xd) in which Pure Milk bid against the cartel, for different

values of nd. The thresholds to define bidder types are 70 miles and the median capacity by

year.56 I find damages of the same magnitude as in the baseline estimation approach: for

instance, if n1 = 1 and n2 = 2, cartel damages are 4.9% and umbrella damages are 3.6%.

As expected, damages increase with the number of bidders per auction. The predictions are

qualitatively similar if I use alternative thresholds for distance and firm size.

53There are no small firms located far from the school district in the data.
54The cost estimates obtained using the homogenization approach of Balat et al. (2016) may not be robust

to small departures from the maintained separability assumption.
55This approach follows the literature relying on parametric assumptions in the estimation of auction

models. See, for instance, Athey, Levin, and Seira (2011) and Krasnokutskaya and Seim (2011).
56The outsider is always the weakest type among firms participating. For instance, if n1 = 1 and n2 = 2,

the outsider firm is of type 1 whereas colluding firms are of type 2.
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Unobserved heterogeneity. The estimation approach abstracts from unobserved auction het-

erogeneity. The latter would be relevant if bidders were to observe auction characteristics

that are unobserved by the econometrician. According to industry experts, there do not seem

to be important common factors relevant to firms’ costs aside from the ones controlled for in

the first estimation step, i.e., input prices, quantities, and auction specifications (escalated

bids, coolers, number of deliveries, etc.).

Endogenous entry. Another issue concerns endogenous entry by non-cartel firms. High

collusive prices in the DFW market area may have attracted Pure Milk to enter and bid

against the cartel.57 Whereas, under competitive conditions, the firm would not have entered

and bid on such contracts, in particular, because they are located further from its main

Waco plant. The counterfactual competitive winning bid should, therefore, account for the

possibility that Pure Milk (or some other potential bidders) may not have entered absent

collusion. Ignoring this endogenous entry channel can result in inflated estimates of cartel

and umbrella damages.58

To account for endogenous entry, I augment the previous bidding model (with asymmetric

bidders) with an initial entry stage, following other applications in the literature, e.g., Athey,

Levin, and Seira (2011) and Krasnokutskaya and Seim (2011). At the entry stage, potential

entrants i decides whether to participate in the auction given knowledge of its private entry

cost, the distribution of type-specific contract and entry costs, and the number of potential

entrants by type.59 Entry decisions are made simultaneously and prior to knowing contract

costs. Firms with expected profits above their entry cost enter the auction. Entrant i learns

its private contract cost and the number of other entrants by type, and submits its bid.

The assumption that entrants know the number of competitors is consistent with the fact

that auctions are held on-site and follows the previous literature on the milk cartel cases

(e.g., Porter and Zona (1999) and Pesendorfer (2000)). Appendix C.1 relaxes this assumption

and allows for the set of entrants to be unobserved by the bidders. The assumption that

a potential entrants does not observe her contract cost realization at the time of her entry

decision but learns it through bid preparation is imposed for two reasons. First, bids do

not depend on the number of potential entrants, conditional on auction characteristics and

57Even if entry costs were small (relative to contract value) according to industry experts, capacity con-
straints would force firms to submit bids only a on subset of contracts. These contracts would be the most
profitable for the firm ex-ante, e.g., located closer to the firm’s plants.

58Defendants (in this case, cartel members) would argue that non-cartel firms should be excluded when
simulating competitive prices, as this would yield higher competitive winning bids and, therefore, lower
damages.

59Entry models with heterogeneous entry costs (such as in Moreno and Wooders (2011)) better fit the
data in this application compared to alternatives such as the model of Levin and Smith (1994). Indeed, all
bidder types are observed to mix in their entry decisions, whereas a model with common entry costs would
predict that the strongest type always enter.

26



the number of entrants (xd,nd) (the coefficients on the number of potential entrants by type

when included in Equation (10) are not statistically significant). If bidders were to observe

a signal about their contract costs prior to entry (i.e., entry is selective), then one would

expect an increase in the number of potential entrants to be negatively associated with bids–

conditional on (xd,nd). Second, this choice simplifies the empirical implementation of the

model: the lack of selection on costs allows me to estimate the untruncated contract cost

distribution from competitive auctions and apply it to collusive auctions.

Let N = (N1, N2, N3) denote the number of potential entrants by type, and n =

(n1, n2, n3) the number of entrants for a given contract.60 Given an equilibrium of the

bidding stage, denote by πk(ci; n) the equilibrium interim payoff of a bidder with cost ci and

type k ∈ {1, 2, 3} under entry combination n = (n1, n2, n3) (abusing notation, πk accounts

for the fact that the actual number of type-k competitors is nk − 1). Under type-symmetric

entry probabilities p = (p1, p2, p3), expected profits at the entry stage are given by

πk(p) =
∑
n

∫ c

c

πk(ci; n)dFC,k(ci) Pr(nk − 1,n−k|N) (12)

where FC,k is the contract cost distribution of type k bidders and Pr(nk − 1,n−k|N) is the

probability that there are nk−1 entrants of type k and n−k entrants of the other types, given

N = (N1, N2, N3) potential entrants. The number of entrants follows a binomial distribution,

for example if k = 1,

Pr(n1−1, n2, n3|N) = Cn1−1
N1−1p

n1−1
1 (1−p1)N1−n1Cn2

N2
pn2

2 (1−p2)N2−n2Cn3
N3
pn3

3 (1−p3)N3−n3 (13)

where Cn
N denotes the binomial coefficient of choosing n firms out of N potential entrants.

Potential entrants enter if their entry cost is below their expected profits from entering

πk(p). Each potential entrant i of type k draws an entry cost Ki from the type-specific

distribution Gk. In equilibrium, bidders’ belief about entry probabilities are correct and

these probabilities solve the following system of equations

pk = Gk(πk(p)) for k ∈ {1, 2, 3} (14)

Moreno and Wooders (2011) and Krasnokutskaya and Seim (2011) provide equilibrium

existence results for entry models with heterogeneous costs. Due to equilibrium multiplicity

60The set of potential bidders and actual bidders coincide, that is, all bidders who enter (by incurring an
entry cost) end up submitting a bid. In general, however, the set of actual bidder may vary if the seller uses
a binding reserve price. I show in Appendix C.2 that the estimation approach and damage assessment can
be extended to environments where the seller uses a reserve price.
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in the entry stage, as is standard in the literature, I assume that the auction data is generated

by the same entry equilibrium.

Following the literature on entry, I define potential entrants for a given contract as the

observed entrants plus any firm that submitted a bid in any auction for a school district

within 60 miles of the school district in question in that given year.61 I find that around 97%

of observed bidders also bid in another auction within 60 miles in the same year indicating

that this definition captures most firms who would have participated with some positive

probability.

Entry probabilities are estimated from the set of competitive auctions (Waco and San

Antonio market area) using the following logit model

pk(i,d)(xd,N) =
exp([xd,Nd]

′ γk(i,d))

1 + exp([xd,Nd]
′ γk(i,d))

(15)

where xd is the same set of contract characteristics used in estimating the bid distribution

in Equation (10), k(i, d) is potential entrant i’s type in auction d, Nd = (N1,d, N2,d, N3,d)

are the number of potential entrants in auction d by type. The median number of potential

entrants is four, whereas the median number of entrants is three. The median and mean

entry rates are close to 65%.62

Damages are computed conditional on Pure Milk entering and bidding against the cartel

in the collusive auction. For the collusive auction, I assume that in addition to the cartel

bidder, all other potential cartel bidders enter and submit complementary bids (Pesendorfer

(2000) makes a similar assumption). For the competitive auction, I simulate counterfactual

entry and bidding decisions using estimated equilibrium entry probabilities and (asymmetric)

equilibrium bid functions given the number of entrants.

Given a combination of observed auction characteristics xd from auctions where Pure

Milk bid against the cartel, an auction is simulated using the following procedure

1. Choose the number of potential entrants by type Nd = (N1,d, N2,d, N3,d). To ease

computation, the analysis is restricted to auctions with at most two types.

2. Simulate outcomes of the collusive auction by drawing from bidders’ cost distributions

and applying equilibrium bid functions (corresponding to the number/type of cartel

bidders and non-cartel firm) to the costs of Pure Milk and the cartel bidder. The cartel

mechanism is assumed efficient and outcomes are conditional on Pure Milk bidding

against the cartel. Denote by bcolw the winning bid in the collusive auction.

61This approach to define potential entrants has precedent in the empirical auction literature (Roberts
and Sweeting (2016)).

62Estimation of entry costs is not necessary as as they do not enter the counterfactual analysis.
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3. Simulate outcomes of the competitive auction by, first, drawing the vector of entrants

nd = (n1,d, n2,d, n3,d) (given entry probabilities pk(xd,Nd) for ∈ {1, 2, 3}), and sec-

ond, applying equilibrium bid functions (corresponding to the number/type of active

entrants) to the costs of entrants using the same cost draws as in the previous step.

Denote by bcomw the winning bid in the competitive auction.63

4. Compute damages as a fraction of the competitive winning bid as

bcolw − bcomw
bcomw

I distinguish between instances where the non-cartel firm wins the collusive auction

(umbrella damages) and instances where the cartel wins the collusive auction (cartel

damages).

For each choice of xd and Nd, L auctions are simulated using the aforementioned pro-

cedure and damages ((bcolw − bcomw )/bcomw ) are averaged across the L simulated auctions (in

practice, L = 5, 000). Finally, for each Nd, I average damages over the combinations of

observed auction characteristics xd from auctions where Pure Milk bid against the cartel.

The results are presented in Table 6 (Panel B).

The magnitudes of cartel and umbrella damages decrease when entry is endogenous, by

an average of 55%. While the collusive winning bid is not affected by entry (since, by as-

sumption, damages are computed conditional on Pure Milk entering and bidding against the

cartel), the competitive winning bid is in expectation higher because some potential entrants

(Pure Milk or cartel members) do not participate in the competitive auction. However, con-

ditional on the non-cartel firm winning the collusive auction, umbrella damages are still

significant compared to cartel damages. Interestingly, in two instances ((N2, N3) = (3, 0)

and (N2, N3) = (1, 2)), umbrella damages are negative, that is, the competitive winning

bid is higher than the collusive winning bid (submitted by the non-cartel firm). This oc-

curs because competitive bidding does not outweigh the combination of high costs for cartel

members (since the non-cartel firm wins the collusive auction) and the drop in the number

of entrants into the competitive auction.

Taken together, these results indicate that incorporating endogenous entry into damage

assessments is important especially in industries where firms compete for a large number

of contracts. In the case of the school milk industry, I find that estimated entry rates are

63If there is only one realized entrant, I follow Krasnokutskaya and Seim (2011) and assume that the
auctioneer submits a random reserve price drawn from the equilibrium bid distribution of the weakest
potential-entrant type. Therefore, the winning bid is determined as in a two-bidder auction, which is known
by the entrant.
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relatively high (around 65% per auction), therefore, umbrella damages are still important

even when non-cartel firms’ entry decision absent collusion is accounted for. Nonetheless, in

other industries characterized by higher entry costs relative to contract value, the level of

counterfactual competitive bids may be more significantly affected by entry.

6.5 Robustness checks

This subsection performs robustness checks by using alternative samples of the data in the

estimation and damage assessment.

First, I estimate the endogenous entry model of Section 6.4 on a subsample of competitive

auctions selected to match closely the set of collusive auctions. For each auction, I estimate

a propensity score, based on a logistic regression of a dummy equal to 1 if the auction is in

Waco or San Antonio, and 0 if in Dallas-Fort Worth, on contract characteristics. Figure 5

shows the kernel density estimates of the propensity scores for the competitive and collusive

auctions.64 The density for competitive auctions overlaps with the support of the density for

collusive auctions, in particular for propensity scores below 0.6. The estimation approach of

the previous section is performed on the subsample of competitive auctions with propensity

score below this threshold.

In a second robustness exercise, I exploit the fact that the Department of Justice’s in-

vestigation was annouced on August 1991, providing one year of data in Dallas-Fort Worth

post-investigation. I estimate the model of Section 6.4 using the sample of auctions held in

Dallas-Fort Worth in 1992.65 The results of both estimation exercises give estimates of cost

primitives and damages that are quantitatively similar to those of Table 6.

7 Conclusion

This paper examines how non-cartel firms’ bidding behavior can be affected by the existence

of a cartel in a first-price procurement setting. In the case of the Texas school milk cartel,

the analysis shows that the largest non-cartel firm bid significantly higher when facing the

cartel than under competitive conditions. The structural model reveals that, conditional on

the non-cartel firm winning against the cartel, damages to the auctioneer (in the form of

inflated winning bids) are a non-negligible fraction of the damages caused when the cartel

64I use a gaussian kernel and the bandwidth is selected using the biased cross-validation approach of Scott
and Terrell (1987).

65I do not use the sample of auctions pre-investigation where Pure Milk bids against the cartel due to
the small sample size and because the bid data cannot be pooled with the post-investigation period as the
bidding game changed.
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wins. Umbrella damages are, therefore, a plausibly first-order phenomenon.

These results provide new evidence on the potential severity of umbrella damages and

their ability to broaden the scope of damages caused by a cartel. The recent decision by the

ECJ to allow umbrella claimants to pursue damages against cartels seems to recognize the

latter fact, albeit pointing at the same time to the difficulty of proving such claims.

Some open questions remain. In particular, the paper focuses on the school milk industry

in which contracts are awarded via first-price procurement auctions. Umbrella damages are,

however, not confined to auction environments. For instance, Asker, Collard-Wexler, and

De Loecker (2019) study global oil extraction and measure the extent of misallocation to

non-cartel firms (corresponding to cost inefficiencies due to misallocation in this paper)

due to OPEC’s exercise of market power. Investigating the prevalence of such damages in

alternative environments is a promising avenue of research and can contribute to emphasizing

their importance for rigorous antitrust damage assessment.
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Tables

Table 1: Number of bids and wins by firm 1980− 1992

Competitive auctions Collusive auctions

Vendor # bids # wins % of wins # bids # wins % of wins

Borden* 318 76 0.239 518 156 0.301
Cabell* 15 3 0.200 403 137 0.340
Foremost* 30 12 0.400 109 33 0.303
Gandy* 23 5 0.217
Knowlton 12 1 0.083
Lilly 7 0 0
Metzger* 21 4 0.190
Oak Farms* 210 45 0.214 320 139 0.434
Preston* 144 65 0.451 189 33 0.175
Pure Milk 229 64 0.279 31 9 0.290
Schepps* 109 18 0.165 419 97 0.232
Superior 46 30 0.652
Vandervoort* 16 1 0.062 324 106 0.327

Total 1136 315 2357 719

Notes: Firms part of the cartel are marked with an asterisk. Competitive auctions
correspond to school districts in the Waco and San Antonio marketing areas. Collusive
auctions correspond to school districts in the Dallas-Fort Worth marketing area.
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Table 2: Descriptive statistics by marketing area

Marketing Area DFW San Antonio Waco

Number of bids 2364 552 577
Number of contracts 722 143 169
Number of contracts-per year 55.5 11 13
Number of counties 25 7 7
Number of school districts 115 15 30

Winning bid/half pint
Mean 0.1442 0.1418 0.1347
SD 0.0216 0.0283 0.0218

Meals per year-school district
Mean 521,574 1,273,001 241,942
SD 651,708 1,436,814 462,488

Contract total cost per school district
Mean 85,182 168,938 18,780
SD 113,238 202,501 24,884

Notes: Bids are for a half-pint of whole white milk. Bids and contract cost are in 1982
dollars.

Table 3: List of variables

Type Variable Description

Auction specific FMO price raw milk price in 1982 dollars
meals number of school lunches per school district per year
escalated equals 1 if the bid is escalated
deliveries number of deliveries per week
number of schools number of schools in the school district
cooler equals 1 if a cooler needs to be provided
number of bids number of bids submitted in the auction

Bidder specific distance great-circle distance between closest plant and school district
bid bid submitted for whole white category
incumbency equals 1 if bidder won the contract in previous year

Notes: Indicators for missing values of cooler, deliveries and escalated are also included
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Table 4: Determinants of Pure Milk’s bids

Depend Variable: Whole white bid (in logarithm)

(1) (2) (3)

Incumbency −0.013 (0.015) −0.029 (0.009) −0.001 (0.009)
FMO price 1.175 (0.068)
Meals −0.064 (0.233) −0.363 (0.141) −0.339 (0.163)
Meals (squared) 0.002 (0.010) 0.015 (0.006) 0.013 (0.007)
Escalated −0.041 (0.016) −0.016 (0.010) −0.019 (0.008)
Escalated (missing) −0.015 (0.018) −0.016 (0.011) −0.012 (0.010)
Cooler 0.004 (0.073) 0.007 (0.043) 0.004 (0.056)
Cooler (missing) −0.047 (0.067) −0.017 (0.040) 0.013 (0.053)
Deliveries 0.004 (0.014) −0.010 (0.008) −0.006 (0.009)
Deliveries (missing) 0.063 (0.051) 0.009 (0.031) 0.040 (0.037)
Number of schools 0.006 (0.003) 0.003 (0.002) 0.008 (0.003)
Number of bids −0.016 (0.013) −0.016 (0.008) −0.014 (0.008)
Distance 0.042 (0.027) 0.080 (0.017) 0.115 (0.022)
Distance (squared) −0.005 (0.005) −0.014 (0.003) −0.032 (0.006)
Collusive auction 0.062 (0.021)
Constant 1.587 (1.372) 0.505 (0.830) 0.631 (0.944)

Year FE No Yes Yes
County FE No No Yes

Observations 217 217 217
R2 0.697 0.908 0.934
Adjusted R2 0.676 0.896 0.921
Residual Std. Error 0.095 (df = 202) 0.054 (df = 191) 0.047 (df = 180)
F Statistic 33.214∗∗∗ (df = 14; 202) 75.614∗∗∗ (df = 25; 191) 71.104∗∗∗ (df = 36; 180)

Notes: A dummy for competitive auctions is omitted in specification (2). The omitted county is BELL in specification
(3). All continuous variables in log. Prices in 1982 dollars. FMO price is omitted in specifications (2) and (3) as it varies
only by year in the case of Pure Milk’s only plant.
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Table 5: Estimates of damages

Point Estimate 90% Confidence Interval

Mean damages per half-pint ($) - LB 0.0033 0.0024 0.0077
Mean damages per half-pint ($) - UB 0.0069 0.0056 0.0077

Mean damages per contract (whole white only) ($) - LB 399.89 293.51 946.09
Mean damages per contract (whole white only) ($) - UB 862.41 661.24 958.26

Mean damages per contract ($) - LB 1, 188.29 859.93 2, 865.21
Mean damages per contract ($) - UB 2, 638.01 1, 941.68 2, 957.66

Mean damages per half-pint ($)
Umbrella damages - LB 0.0019 0.0012 0.0075
Umbrella damages - UB 0.0074 0.0055 0.0077
Cartel damages 0.0056 0.0032 0.0112

Mean damages as fraction of competitive winning bid
Umbrella damages - LB 0.0159 0.011 0.0666
Umbrella damages - UB 0.0639 0.0488 0.0696
Cartel damages 0.0494 0.0287 0.1011

Mean damages as fraction of competitive winning mark-up
Umbrella damages - LB 0.236 0.1218 0.7024
Umbrella damages - UB 0.6112 0.5014 0.6971
Cartel damages 0.554 0.2991 1.0026

Mean damages per contract (whole white only)
Umbrella damages - LB 231.43 149.64 905.14
Umbrella damages - UB 910.67 650.68 977.32
Cartel damages 663.12 389.86 1, 359.69

Mean damages per contract
Umbrella damages - LB 701.19 441.94 2, 722.07
Umbrella damages - UB 2, 760.05 1, 865.92 3, 067.38
Cartel damages 1, 949.39 1, 156.52 4, 157.93

Mean cost inefficiency due to misallocation
per half-pint ($) 0.0066 0.0015 0.0126
in percentage loss 0.0594 0.0147 0.1272
per contract ($) 2, 337.66 410.02 4, 824.83

Notes: $ are 1982 dollars. UB corresponds to an inefficient cartel. LB corresponds to an efficient cartel. Only cartel damages in the
case of an efficient mechanism are reported. Per contract (whole white only): does not include damages for the other milk categories.
Per contract: computed by applying the overcharge estimated to the total quantity purchased (whole white and other categories).
Confidence intervals based on 5,000 bootstrap iterations.
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Table 6: Damages as fraction of the competitive winning bid (in percent)

Panel A. Exogenous entry
Bidders Cartel damages Umbrella damages

n1 n2 n3 Point Estimate 90% CI Point Estimate 90% CI

1 2 0 4.9 3.7 5.9 3.6 2.6 4.7
1 3 0 6.7 5.1 8 5.7 4.3 7.1
1 4 0 7.7 5.9 9.2 6.9 5.2 8.4
1 0 2 4.5 2.9 5.5 3.3 2.2 4.3
1 0 3 6 3.8 7.5 5.2 3.3 6.6
1 0 4 6.9 4.3 8.7 6.2 3.9 7.9
0 3 0 3.9 3.1 4.5 2 1.6 2.3
0 4 0 5.7 4.5 6.6 4.5 3.6 5.2
0 5 0 6.8 5.4 8 5.9 4.7 6.8
0 1 2 3.4 2.6 4.1 1.7 1.2 2.3
0 1 3 5 3.6 6 3.8 2.8 4.7
0 1 4 5.9 4.2 7.2 5 3.5 6.2

Panel B. Endogenous entry
Potential bidders Cartel damages Umbrella damages

N1 N2 N3 Point Estimate 90% CI Point Estimate 90% CI

1 2 0 2.8 2 3.5 0.8 0.2 1.6
1 3 0 4.1 3 5.1 2.4 1.5 3.5
1 4 0 4.9 3.5 6 3.1 2.1 4.3
1 0 2 2.5 1.6 3.3 0.8 0.2 1.6
1 0 3 3.7 2.3 4.7 2.2 1.2 3.1
1 0 4 4.4 2.7 5.6 2.9 1.6 3.9
0 3 0 2.1 1.5 2.3 -0.9 -1.1 -0.7
0 4 0 3.1 2.2 3.5 0.7 0.3 0.9
0 5 0 3.9 2.9 4.4 1.7 1 2
0 1 2 1.8 1.3 2.2 -0.8 -1.3 -0.1
0 1 3 2.8 2 3.3 0.6 0 1.1
0 1 4 3.5 2.5 4.2 1.5 0.8 2.1

Notes: Mean damages are averaged across collusive auctions in which Pure Milk bid against the cartel.
The variables (n1, n2, n3) (resp. (N1, N2, N3)) corresponds to the number of {small × near}, {large ×
far}, and {large × near} bidders (resp. potential bidders). The thresholds used to define firm types
are 70 miles for distance and the median firm capacity for firm size. Capacity refers to the maximum
total dollar value won by the firm in any year over competitive and rigged school districts. The cartel
mechanism is assumed efficient. All estimates are conditional on the cartel and the non-cartel bidder
entering the collusive auction. Confidence intervals based on 5, 000 bootstrap iterations.
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Figures

Figure 1: Map of the counties in the dataset, by market area
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Figure 2: Estimates and 95% Confidence Intervals for the county dummies
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Figure 3: Kernel density estimates of normalized bids (first-stage) under three specifications

Figure 4: Estimated bid functions for auctions with three bidders with an efficient and
inefficient cartel mechanism

(a) Efficient cartel mechanism (b) Inefficient cartel mechanism
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Figure 5: Kernel density estimates of the propensity scores for competitive and collusive
auctions
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A Theoretical results

A.1 Effect of collusion on the non-cartel firm’s profits

This subsection examines the effect of collusion between a strict subset of bidders on the

non-cartel firm’s profits. I show that the non-cartel firm’s interim payoff (i.e., the expected

profits conditional on its cost) always increases when its competitors form a cartel.

Define the outsider’s equilibrium interim payoff when facing n competitors (no collusion):

π(c) = max
b

(b− c) [1− F (φ(b))]n

where F denotes the symmetric cost distributions for all bidders. Similarly, define the

outsider equilibrium interim payoff when facing the cartel bidder (the n competitors collude):

π̃(c) = max
b

(b− c) [1− F1(φ1(b))]

where F1 is the cost distribution of the cartel bidder. Assume first that the cartel mechanism

is efficient, i.e F1(c) = 1− (1− F (c))n. Then, one obtains the following lemma:

Lemma 2. If the cartel mechanism is efficient, the outsider’s interim payoff is strictly larger

when its competitors collude:

π̃(c) > π(c) for all c ∈ [c, c)

Proof. Note that if φ solve the symmetric n+ 1 bidders procurement auction, it also solves

the two bidder procurement auction in which bidders’ cost are drawn from 1− (1− F (c))n.

When the n firms collude efficiently, we obtain a two-bidder asymmetric auction in which

bidders’ costs are drawn from F for the non-cartel firm and 1 − (1 − F (c))n for the cartel

bidder. Because F and 1−(1−F (c))n can be ordered stochastically in the hazard rate sense,

Corollary 1 of Lebrun (1998) applies to obtain the strict inequality for the non-cartel firm

profits.

In general, the cartel mechanism might not be efficient. Assume that the cartel bidder’s

cost distribution F1 satisfies the conditional stochastic dominance relation66

d

dc

(
1− F1(c)

(1− F (c))n

)
> 0 for all c ∈ (c, c] (16)

66Note that this relation can also be rewritten in terms of hazard rate dominance.
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Proposition 2. If (19) holds, the outsider’s interim payoff is strictly larger when its com-

petitors collude:

π̃(c) > π(c) for all c ∈ [c, c)

Proof. F1 and 1 − (1 − F (c))n satisfy the assumption of conditional stochastic dominance,

therefore, Corollary 1 in Lebrun (1998) implies that the outsider’s interim payoff is strictly

larger when facing the cartel with the mechanism yielding F1 than when facing an efficient

cartel. Combining this observation with the previous lemma gives the result.

A.2 Effect of the cartel size and cartel mechanism on the non-

cartel firm’s bidding

In this subsection, comparative statics for the non-cartel firm equilibrium bid function are

presented. In particular, two features are investigated: the cartel size and the cartel mech-

anism. Comparative statics in first-price asymmetric auctions have been studied by Lebrun

(1998). The results presented here are an application of the main theorem proved in the

latter paper to the specific case of a cartel bidding in a procurement auction.

First, let the cartel mechanism be fixed. Using the same notations introduced above,

denote by 1 the cartel bidder, and by 2 the non-cartel bidder (Fi, for i ∈ {1, 2} the corre-

sponding cost distributions, which satisfy the assumptions of the model). The dependency of

the cartel bidder’s cost distribution on the cartel size n is explicitly represented as: F1(.|n).

In particular under Assumption 2, if the cartel is efficient: F1(c|n) = 1− (1− F (c))n (min-

imum cost among n symmetric bidders). If the cartel is inefficient: F1(c|n) = F (c) (cartel

bidder selected randomly).

Assume the cartel mechanism is such that F1(.|n) satisfies the following conditional

stochastic dominance condition66

d

dc

(
1− F1(c|n)

1− F1(c|n+ 1)

)
> 0 for all c ∈ (c, c] (17)

Proposition 3. Assume that (17) holds. Let the bid functions and their inverses at the

unique equilibrium when the cartel size is n be denoted β1(.|n),β2(.|n) and φ1(.|n),φ2(.|n)

respectively. Then

1. As the cartel size increases, the non-cartel firm bids more aggressively:

β2(c|n) > β2(c|n+ 1) for all c ∈ [c, c)

47



2. The larger cartel’s bid distribution is stochastically dominated by the smaller cartel’s

bid distribution:

F1(φ1(b|n)|n) < F1(φ1(b|n+ 1)|n+ 1) for all c ∈ [b, c)

where b = β1(c|n) = β2(c|n).

3. As the cartel size increases, both the cartel and non-cartel bidders’ interim profits

(conditional on their private cost) decrease.

Proof. Follows directly from Theorem 1 and Corollary 1 in Lebrun (1998).

Condition (17) holds when the cartel mechanism is efficient. However, the condition does

not hold if the cartel mechanism is inefficient (F1 is independent of n).

Next, let the cartel size be fixed. The effect of the cartel mechanism on the non-cartel

firm bidding can be analyzed. Consider two mechanisms implying a cartel bidder’s cost

distribution of either F1 or F̃1. Assume the two distributions satisfy the conditional stochastic

dominance relation66

d

dc

(
1− F1(c)

1− F̃1(c)

)
> 0 for all c ∈ (c, c] (18)

This condition implies in particular that F̃1 is first order stochastically dominated by F1.

For instance, if F1(c) = F (c) (inefficient cartel) and F̃1(c) = 1− (1−F (c))n (efficient cartel),

the condition holds.

Proposition 4. Assume (18) holds. Let the bid functions and their inverses at the unique

equilibrium when the cartel bidder’s distribution is F1 (resp. F̃1) be denoted (β1,β2) (resp.

(β̃1,β̃2)) and (φ1,φ2) (resp. (φ̃1,φ̃2)). Then

1. The non-cartel firm bids more aggressively when the cartel bidder’s cost distribution is

F̃1 than when it is F1:

β2(c) > β̃2(c) for all c ∈ [c, c)

2. The cartel’s equilibrium bid distribution can be ordered according to first-order stochas-

tic dominance:

F1(φ1(b)) < F̃1(φ̃1(b)) for all c ∈ [b, c)

where b = β1(c) = β2(c)

3. Cartel and non-cartel bidders’ interim profits (conditional on their private costs) are

lower under F̃1 than under F1.
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Proof. Follows directly from Theorem 1 and Corollary 1 in Lebrun (1998).

The intuition for Proposition 3 and 4 is as follows. In both cases, as the cartel bidder is

made stronger (either by increasing the size of the cartel or by making the cartel mechanism

more efficient), the non-cartel firm responds by bidding more aggressively (part (1) of the

propositions). As a consequence, the cartel bidder’s interim payoff decreases. In equilibrium,

the cartel best response is such that it is more likely to bid lower: the new equilibrium bid

distribution is first-order stochastically dominated by its initial equilibrium bid distribution

(part (2) of the propositions). This results in the non-cartel firm interim payoff being lower

as well.

A.3 Characterization of bounds on damages

This subsection investigates the effect of the cartel mechanism on the size of damages. Dam-

ages can be ordered according to the efficiency of the cartel mechanism. I show, in particular,

that efficient and inefficient mechanisms provide bounds on damages within a simple class

of cartel mechanisms.

A cartel mechanism is defined as a (possibly stochastic) rule that selects a cartel member

to bid in the target auction. As in McAfee and McMillan (1992), this definition abstracts

from the particular enforcement mechanism used by the cartel (e.g., repeated interactions

or the use of an enforcer). I also abstracts from modelling transfers between members. As a

shorthand, in the rest of this subsection, a cartel mechanism refers to the cost distribution

of the selected cartel bidder.

I restrict the analysis to a class of cartel mechanisms satisfying the following two condi-

tions: First, the mechanism does not dictate bidding in the target auction, i.e., the cartel

bidder bids to maximize her expected profits given her private cost (in accordance with

the model of Section 2). This assumption rules out mechanisms where side-payments distort

bidding in the target auction, as in the case studied by Asker (2010). In his study comparing

the Texas and the Florida milk cartels, Pesendorfer (2000) finds evidence consistent with the

Texas cartel operating without side-payments. Second, I assume that the cost distribution

of the selected cartel bidder is of the form

F1(c) = 1− (1− F (c))θ for θ ∈ [1,∞)

where F denotes the symmetric cost distributions for all cartel members. This second

condition guarantees that all cartel mechanisms in the class studied can be stochastically

ordered in the hazard rate sense. With n cartel members, θ can be at most equal to n.
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Denote by β the symmetric equilibrium bidding strategy in the auction where the non-

cartel firm faces n non-colluding bidders. Let bcompw denote the winning bid in the competitive

auction

bcompw = min
(
{β(ci)}n+1

i=1

)
In the collusive auction, denote by 1 the cartel bidder and by 2 the non-cartel bidder.

Consider two mechanisms, from the class described above, implying a cartel bidder’s cost

distribution of either F1 or F̃1. Assume the two distributions satisfy the conditional stochastic

dominance relation67

d

dc

(
1− F1(c)

1− F̃1(c)

)
> 0 for all c ∈ (c, c] (19)

This condition implies in particular that F̃1 is first-order stochastically dominated by F1.

For instance, the condition holds if F1(c) = F (c) , i.e., the cartel is inefficient and the cartel

bidder is selected randomly (θ = 1) and if F̃1(c) = 1− (1−F (c))n, i.e., the cartel is efficient

and the cartel bidder is the lowest cost member (θ = n).

Proposition 5. Assume (19) holds. Let the bid functions at the unique equilibrium when the

cartel bidder’s distribution is F1 (resp. F̃1) be denoted (β1,β2) (resp. (β̃1,β̃2)). Let bcolw and

b̃colw denote the winning bids in the collusive auction under mechanism F1 and F̃1 respectively.

Then

1. The total expected damages to the auctioneer are larger when the cartel bidder’s cost

distribution is F1 than when it is F̃1:

E
[
bcolw − bcompw

]
> E

[
b̃colw − bcompw

]
2. The expected damages to the auctioneer, conditional on the non-cartel firm having the

lowest cost, are larger when the cartel bidder’s cost distribution is F1 than when it is

F̃1:

E [β2(c2)− β(c2)|β(c2) = bcompw ] > E
[
β̃2(c2)− β(c2)|β(c2) = bcompw

]
Proof. Part 1 of the proposition is a consequence of results 1 and 2 in Proposition 4. Both

the cartel and non-cartel bidder’s bid distributions under F1 stochastically dominate their

bid distributions under F̃1. Therefore, the distribution of the collusive winning bid under F1

(denoted bcolw ) stochastically dominates the distribution of the collusive winning bid under

67This relation is equivalent to the hazard rate dominance. Within the class of mechanisms studied, if F1

and F̃1 are parameterized by θ and θ̃, this condition is equivalent to θ < θ̃.
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F1 (denoted b̃colw ). As the expected competitive winning bid is independent of the cartel

mechanism, the total expected damages are larger under F1.

Part 2 of the proposition is a consequence of result 1 in Proposition 4. Conditional on being

the lowest cost bidder, the non-cartel firm bids more aggressively when facing a cartel bidder

with distribution F̃1 than with distribution F1, that is,

β2(c2) > β̃2(c2)

As the expected competitive winning bid is independent of the cartel mechanism (conditional

on the non-cartel firm being the lowest bidder, that is, β(c2) = bcompw ), expected damages are

larger under F1.

Any mechanism in the class defined above, such that θ < n, generates a cost distribution

for the cartel bidder that is stochastically dominated in the hazard rate sense by the cost

distribution under an efficient cartel mechanism (θ = n). Proposition 5 implies that damages

under an efficient cartel mechanism provide a lower bound on total damages and damages

conditional on the non-cartel firm being the lowest cost bidder.

To obtain an upper bound on damages, I assume that the cartel is able to select the

cartel bidder at least as well as at random, i.e., θ ≥ 1. This is consistent with the findings

of Pesendorfer (2000) who shows that although the Texas cartel did not use side-payments,

its functioning was almost efficient thanks to the large number of contracts to be divided. If

θ ≥ 1, Proposition 5 implies that damages to the auctioneer are highest with an inefficient

cartel.

The bounds obtained are sharp in instances where plaintiffs purchased from both cartel

and non-cartel firms, as was the case for school districts in DFW.68 Indeed, civil cases would

aim to assess the total amount of damages (inflicted by both cartel and non-cartel firms).

If a plaintiff purchased only from non-cartel firms, the bounds obtained are no longer sharp

because only damages when the non-cartel firm is the lowest cost bidder can be bounded.

If the non-cartel firm has a higher cost than the cartel bidder but still wins the asymmetric

collusive auction, damages cannot be ordered. In theory, misallocation due to asymmetries

has an ambiguous effect on the size of umbrella damages: in particular, the probability that

the contract is mis-allocated to the non-cartel firm can be non-monotone in the parameter

θ.

68When assessing damages for recovery to affected schools, the proposed approach allows to bound the
total damages including both direct cartel and umbrella damages.
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B Algorithm for solving the asymmetric auction

The details of the numerical method used to solve the asymmetric auctions are presented

here. Recall that the cartel and non-cartel bidders’ equilibrium inverse bid functions, denoted

φ1 and φ2 respectively, are the solutions of:
dφ1
db

= 1−F1(φ1(b))
f1(φ1(b))

1
(b−φ2(b))

dφ2
db

= 1−F2(φ2(b))
f2(φ2(b))

1
(b−φ1(b))

(20)

where Fi (resp. fi) is the cumulative distribution (resp. density function) of costs of

the cartel (i = 1) and the outsider firm (i = 2). Along with the boundary conditions

φ1(b) = φ2(b) = c (for some b, lower bound of the support of bids) and φ1(c) = φ2(c) = c.

The location of the left-boundary b is unknown. As shown in Fibich and Gavish (2011), the

system of differential equations (20) can be recast as a system in φ1 and b (instead of φ2) as

functions of φ2. After this change of variable, the new BVP is given by:
dφ1
dφ2

= 1−F1(φ1)
f1(φ1)

f2(φ2)
1−F2(φ2)

b−φ1
b−φ2

db
dφ2

= f2(φ2)
1−F2(φ2)

(b− φ1)
(21)

with the boundary conditions: φ1(φ2 = c) = b(φ2 = c) = c, and φ1(φ2 = c) = c. This BVP

is defined on a known domain φ2 ∈ [c, c]. Fibich and Gavish (2011) propose fixed point

iterations as one possible method for solving (21). Iterations are given by:
(

d
dφ2

+
1−F1(φ

(k)
1 )

f1(φ
(k)
1 )

f2(φ2)
1−F2(φ2)

1
b(k)−φ2

)
φ

(k+1)
1 =

1−F1(φ
(k)
1 )

f1(φ
(k)
1 )

f2(φ2)
1−F2(φ2)

b(k)

b(k)−φ2(
d
dφ2
− b(k)−φ(k+1)

1

b(k)−φ2
f2(φ2)

1−F2(φ2)

)
b(k+1) = − b(k)−φ(k+1)

1

b(k)−φ2
f2(φ2)

1−F2(φ2)
φ2

(22)

with the boundary conditions: φ
(k+1)
1 (φ2 = c) = b(k+1)(φ2 = c) = c, and φ

(k+1)
1 (φ2 = c) =

c. In the case of this particular empirical application, the initial guess used are: φ
(0)
1 (φ2) = φ2

and b(0)(φ2) = 0.9 + (c − 0.9)/c ∗ φ2. Although convergence of the fixed point iterations is

not guaranteed, because a unique solution exists, if the algorithm converges to a function

satisfying the BVP, this function is the solution to the BVP.

C Uncertainty about the competition

This appendix considers extensions of the baseline entry model to instances where the number

of potential competitors is not observed by the players. I consider separately cases depending

on whether a reserve price is used or not. To fix terminology, I refer to potential entrants as
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the players with the option of paying an entry cost and learning their private cost, potential

bidders are those who enter and decide whether to bid, and actual bidders are those who

end up placing a bid in the auction.

C.1 The case of no reserve prices

The case in which the auctioneer does not impose a reserve price is first considered, as it

reflects the auction format studied in the data. When the auctioneer does not set a reserve

price, the set of potential bidders (i.e., entrants) coincides with the set of actual bidders.

Theoretical models of first-price auctions with endogenous entry in which bidders do not

observe other entrants before bidding have been studied by McAfee, Quan, and Vincent

(2002) and Hendricks, Pinkse, and Porter (2003). The former paper derives conditions to

ensure existence of a pure strategy Nash equilibrium in increasing strategies (see also the

discussion in section 6.3.3 of Athey and Haile (2007)).

Let N = (N1, N2, N3) denote the number of potential entrants by type, and n =

(n1, n2, n3) the number of entrants who place a bid. In this section, n is not observed

by entrants, whereas the set of potential entrants N is common knowledge. I assume that,

in equilibrium, players hold correct beliefs about entry probabilities.

Under type-symmetric entry probabilities p = (p1, p2, p3), expected profits at the entry

stage are given by

πk(N,p) =

∫ c

c

πk(ci|N,p)dFC,k(ci) (23)

where FC,k is the contract cost distribution of type-k bidders and πk(ci|N,p) is the equilib-

rium interim payoff of a bidder with cost ci. The interim payoff is obtained by taking the

expectation over the set of potential bidders

πk(ci|N,p) = max
b

∑
n

(b− ci) Pr(b = min
j
bj|nk − 1,n−k) Pr(nk − 1,n−k|N) (24)

where Pr(nk − 1,n−k|N) is the probability that there are nk − 1 entrants of type k and n−k

entrants of the other types, and Pr(b = minj bj|nk − 1,n−k) is the probability that bidder i

wins the auction with a bid b given the entry profile (nk − 1,n−k).69

69The probability of winning can be expressed as a function of the bid distributions FB,k for each type k.
For example, if k = 1,

Pr(b = min
j
bj |n1 − 1,n−1) = (1− FB,1(b))n1−1(1− FB,2(b))n2(1− FB,3(b))n3

53



Compared to Equation (12), bidders do not condition on the number of potential bidders

(who all place a bid under no reserve price) when choosing their optimal bid, only on the

number of potential entrants. As such, equilibrium bidding strategies will only depend on

the type k and the vector of potential entrants N. By contrast, in Section 6.4, equilibrium

bid functions depend on the firm type and the realized vector of potential bidders n.

The rest of the model follows closely that of Section 6.4. The number of entrants is

distributed according to a binomial distribution, for example if k = 1,

Pr(n1−1, n2, n3|N) = Cn1−1
N1−1p

n1−1
1 (1−p1)N1−n1Cn2

N2
pn2

2 (1−p2)N2−n2Cn3
N3
pn3

3 (1−p3)N3−n3 (25)

where Cn
N denotes the binomial coefficient of choosing n firms out of N potential entrants.

Potential entrants participate if their entry cost is below their expected profits from entering

πk(N,p). Each potential entrant i of type k draws an entry cost Ki from the type-specific

distribution Gk. In equilibrium, bidders’ belief about entry probabilities are correct and

these probabilities solve the following system of equations

pk = Gk(πk(N,p)) for k ∈ {1, 2, 3} (26)

An equilibrium of the game is composed of a vector of entry probabilities p = (p1, p2, p3)

and equilibrium bid functions (β1, β2, β3), such that βk(ci) solves problem (24) given entry

probabilities p, and the latter vector is the solution of system (26) given equilibrium bidding

strategies (β1, β2, β3) (and corresponding interim payoffs and expected profits at the entry

stage).

The model can be estimated by following the approach of Section 6.4 with two modifi-

cations: the bid distributions parameterized in Equations (10) and (11) are now a function

of (xd,Nd) instead of (xd,nd); and the first-order condition used to recover the underlying

cost distribution (as in Guerre, Perrigne, and Vuong (2000)) reflects the modified problem

(24).70 Entry probabilities Pr(n1 − 1,n−1|N) can be estimated directly from the data as

in Section 6.4 because, unlike bidders, the econometrician observe both the set of potential

entrants and actual bidders.

70Given the bid distribution FB,k for type-k bidders (with corresponding density fB,k), the first-order
condition for type k = 1, for example, can be expressed as a function of the observed distribution of bids
and entry probabilities as

ci = bi −

∑
n1,n2,n3

Pr(n1 − 1,n−1|N)(1− FB,1(bi))
n1−1(1− FB,2(bi))

n2(1− FB,3(bi))
n3∑

n1,n2,n3

Pr(n1 − 1,n−1|N) d
dbi

((1− FB,1(bi))n1−1(1− FB,2(bi))n2(1− FB,3(bi))n3)
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C.2 The case of a binding reserve price

The model of the previous section can be extended to accommodate the use of reserve prices.

Let r denote the reserve price announced at the time the contract is advertised, and denote by

N = (N1, N2, N3) the number of potential entrants, n = (n1, n2, n3) the number of potential

bidders, and ñ = (ñ1, ñ2, ñ3) the number of actual bidders. With a binding reserve price,

only bidders with sufficiently low cost (i.e., ci ≤ r) place a bid. Therefore, the set of actual

bidders ñ will in general not coincide with the set of potential bidders n.

Importantly, this setting features two sources of uncertainty about the competition. First,

bidders do not know which potential entrants decided to incur the entry cost. Second, bidders

are uncertain about which potential bidders (entrants) have drawn a private cost less or equal

to the reserve price and decided to place a bid.

It is straightforward to modify the model of appendix C.1 to accommodate a reserve

price. Expected profits at the entry stage are given by

πk(N,p, r) =

∫ r

c

πk(ci|N,p, r)dFC,k(ci) (27)

The interim payoff are obtained by taking the expectation over the set of actual bidders

πk(ci|N,p, r) =


0 if r < ci

maxb≤r
∑
n

(b− ci) Pr(b = minj bj|ñk − 1, ñ−k) Pr(ñk − 1, ñ−k|N) if ci ≤ r

(28)

Problem 28 can alternatively be written taking the expectation over the set of potential

bidders Pr(nk − 1,n−k|N). However, in most applications, one would expect the econome-

trician to observe ñ (the set of actual bidders) not the set of potential bidders n.

As before, the number of entrants follows a binomial distribution. An equilibrium of

the game is composed of a vector of entry probabilities p = (p1, p2, p3) and equilibrium

bid functions (β1, β2, β3), such that βk(ci) solves problem (28) with boundary conditions

βk(r) = r, and the entry probabilities are the solution of the analog of system (26)—indexed

by r—given equilibrium bidding strategies (β1, β2, β3).

If (N, ñ), or alternatively (N,n), are observed by the econometrician, Athey and Haile

(2007) show that the (truncated) cost distributions for all types are identified from knowledge

of the reserve price, all bids submitted, and the identity of bidder (types) for all costs

realizations ci ≤ r (Theorem 6.4 and 6.5). Estimation and damages assessment will proceed

as in the previous section with the exception that one must use the truncated distributions
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of costs FC,k(c) for c ≤ r.71 Li (2005) considers parametric estimation of a model with costly

signal acquisition and binding reserve prices.

D Comparing competitive and collusive markets

This appendix provides evidence that the bidding behavior is consistent with competition

in the San Antonio and Waco marketing areas but not in the Dallas Fort-Worth (DFW)

marketing area. First, I implement the test of Kawai, Nakabayashi, and Ortner (2020)

that compares incumbency status between close winners and losers through a regression

discontinuity design. Second, I test whether the dependence of bids on own and rival distance

to school districts is symmetric across incumbent and non-incumbent bidders (as in the

exchangeability test of Bajari and Ye (2003)). Both tests suggest the cartel was segmenting

markets based on incumbency status in DFW but not in the other markets.72

It is worth noting that, excluding Pure Milk and two smaller non-cartel firms, all other

firms bidding for contracts in San Antonio and Waco were part of the cartel prosecuted in

DFW (see Table 1).

D.1 Incumbency status

Previous studies of the milk cartel cases find evidence that incumbency rates among colluders

were high (Hewitt, McClave, and Sibley (1996) and Pesendorfer (2000) for the Texas cartel).

Firms colluded by agreeing not to undercut the bid of the incumbent firm that had served

a given school district in the previous year.

In light of these findings, I implement the regression discontinuity design (RDD) test of

Kawai, Nakabayashi, and Ortner (2020). The test relies on the idea that, under competition,

the probability that a bidder wins or loses an auction conditional on close bids approaches

50%, regardless of the bidders’ characteristics, in particular their incumbency status. As a

consequence, even if incumbency is correlated with costs, the difference in this status between

close winners and close losers should vanish as the bid difference between them approaches

zero. Under a collusive scheme where markets are allocated based on incumbency status,

close winners would be significantly more likely to be incumbent than close losers, even as

the bid difference between them converges to zero.

71Knowledge of the full distribution of costs, i.e., for c > r is not necessary to compute counterfactual
bids under the competitive and collusive auctions, because in both cases bidders with cost below the reserve
price are the only ones to place bids.

72While these tests do not definitely rule out collusion in San Antonio and Waco, they indicate, at mini-
mum, that the cartel was not using a market segmentation based on incumbency nor a bid rotation mechanism
in these markets.
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Figure 6: Histograms of ∆i,t

(a) Competitive Auctions (b) Non-competitive Auctions

To formalize the approach, I define a bidder to be an incumbent for a given school milk

auction if the bidder was the winner of the district’s auction in the previous year.73 Let

∆i,t = bi,t−∧b−i,t denote the difference between the bid of firm i, and the most competitive

alternative bid in year t (omitting the subscript for the school district). If ∆i,t < 0, bidder

i wins the auction; if ∆i,t > 0, bidder i loses the auction. Let xi,t denote the incumbency

status of bidder i in year t. This variable equals one if bidder i won the auction in year t− 1

(i.e, bidder i is the incumbent at t) and zero otherwise.

Figure 6 plots the histogram of the running variable ∆i,t, separately for collusive markets

(DFW) and competitive markets (San Antonio and Waco). Values of ∆i,t close to zero

correspond to auctions in which the winner was determined by a very small margin.

The parameter of interest is denoted β and is defined as

β = lim
∆i,t↘0+

E[xi,t|∆i,t]− lim
∆i,t↗0−

E[xi,t|∆i,t]

If a cartel allocates contracts to incumbents, we expect β to be strictly negative: close

winners are much more likely to be incumbents than close loser. Alternatively, if auctions

are competitive, then β should be close to zero. I estimate β using a local linear regression

as follows:

73In the rest of this appendix, I drop the year in which a school district first appears in the sample.
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β̂ = â+ − â−

(â+, b̂+) = arg min
∑
i,t

(
xi,t − a+ − b+∆i,t

)2
K

(
∆i,t

hn

)
1∆i,t>0

(â−, b̂−) = arg min
∑
i,t

(
xi,t − a− − b−∆i,t

)2
K

(
∆i,t

hn

)
1∆i,t<0

where hn is the bandwidth andK is the kernel. I follow the bias-corrected robust inference

procedure proposed by Calonico, Cattaneo, and Titiunik (2014) (CCT hereafter). Standard

errors are clustered at the auction level. The null hypothesis is H0 : β = 0, tested against

the alternative H1 : β 6= 0.

Table 7 shows the results separately for competitive (San Antonio and Waco) and non-

competitive (DFW) markets. In both columns, I focus on the sample of auctions in which

there is an incumbent. The parameter of interest is negative and statistically significant

in non-competitive auctions. The marginal winner is approximately 47.5 percentage points

more likely to be an incumbent than the marginal loser. By contrast, β̂ is not statistically

different from zero in competitive markets.74

Table 7: Regression Discontinuity Estimates

(1) (2)
Competitive Non-competitive

Auctions Auctions

β̂ -0.145 -0.475
(0.180) (0.079)

h 0.007 0.007

Observations 539 1,417

Note: The outcome variable is a dummy for incum-
bency status. Non-competitive auctions correspond
to school districts located in the Dallas-Fort Worth
marketing area. Competitive auctions correspond to
school districts located in the Waco and San Antonio
marketing areas. Standard errors are clustered at the
auction level and reported in parenthesis. The variable
h correspond to the bandwidth parameter, selected us-
ing the CCT approach.

Figure 7 shows the binned scatter plots that correspond to the results in Table 7. Obser-

74I also experimented with alternative market definitions, i.e., separating between Waco and San Antonio
counties. The results are qualitatively similar, although the sample sizes are smaller.
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Figure 7: Binned Scatter-plots for Incumbency

(a) Competitive Auctions (b) Non-competitive Auctions

vations are binned and the average incumbency status per bin are plotted. The red curves

are global polynomial fits estimated to the left and right of the threshold. The right fig-

ure, corresponding to collusive markets, illustrates the discontinuity in incumbency status

between marginal winners and losers.

D.2 Bidding behavior

In this subsection, I implement a test similar to the exchangeability test of Bajari and

Ye (2003) by comparing the bid distribution of incumbents to that of non-incumbents. If

contracts are allocated to incumbents and other cartel members submit phony bids, one

would expect only the incumbent’s bid to respond to cost relevant covariates (such as own

and rival distance to the school district). By contrast, under competition, incumbents and

non-incumbents’ bids should all respond symmetrically to own and rival distance to the

school district (all else equal).

To operationalize the test, I regress bids on own and rival distance to the school district,

include interaction with incumbency status, and control for auction (i.e., school district-

year) and firm fixed effects. Rival distance to the school district is computed as the mean

distance among a firm’s competitors.75 Table 8 shows the results separately for competitive

75I experimented using alternative definition such as the minimum distance among rivals. The results are
qualitatively similar, although marginally significant, due to the lack of variation in this variable among firms
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and non-competitive markets. In non-competitive markets, non-incumbent firms’ bids do

not respond to own- and rival distances. The incumbent’s bids, however, depend positively

on own and rival distance to the school district. In competitive markets, there is no sta-

tistically significant difference between incumbents and non-incumbents with respect to the

dependence of bids on own and rival distances.

Table 8: Reduced-Form Bid Functions

Depend variable: Whole white bid (in log)

Competitive Non-competitive

(1) (2)

Incumbency −0.025 (0.054) −0.241 (0.073)
Distance 0.008 (0.015) −0.013 (0.025)
Distance (squared) −0.001 (0.002) 0.003 (0.004)
Rival distance 0.019 (0.008) 0.001 (0.015)
Distance × Incumbency 0.014 (0.018) 0.100 (0.042)
Distance (squared) × Incumbency −0.000 (0.002) −0.018 (0.006)
Rival distance × Incumbency −0.014 (0.009) 0.017 (0.008)

Auction FE Yes Yes
Bidder FE Yes Yes

Observations 830 1,675
R2 0.940 0.914
Adjusted R2 0.911 0.870

Note: Unit of observation: bid for auctions with at least two bidders. Non-competitive
auctions correspond to school districts located in the Dallas-Fort Worth marketing area.
Competitive auctions correspond to school districts located in the Waco and San Antonio
marketing areas. Rival distance refers to the average distance to school district among
rivals. Standard errors are clustered at the auction level and reported in parenthesis.
All continuous variables are in log. Prices are in 1982 dollars.

who are not the closest to the school district (for which the variable is equal to the minimum distance among
all firms). Also note that the sample sizes differ from the previous subsection because, if the distance variable
is missing for at least one bidder, rival distance cannot be computed and the auction must be dropped.
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