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Abstract

We incorporate spatial differentiation into a dynamic oligopoly game of retail com-
petition. We propose a tractable estimation strategy based on the ECCP estimator of
Kalouptsidi et al. (2020), adapted to games. The model is used to study dollar store
chains’ expansion in the US and its impact on spatial market structure. We show that
accounting for rival stores’ spatial reallocation is crucial to quantify the net impact
of dollar stores. Dispersal policies restricting dollar store clustering can reduce retail
variety by limiting rivals’ ability to spatially differentiate. Our results highlight the
importance of accounting for spatial dynamics when evaluating retail entry regulation.

Keywords: retail competition, spatial differentiation, dollar store, dynamic games

JEL Classification: L13, D43, L51

∗Caoui: elhadi.caoui@rotman.utoronto.ca. Hollenbeck: brett.hollenbeck@anderson.ucla.edu. Osborne:
matthew.osborne@rotman.utoronto.ca. Portions of this article were previously included in an earlier draft
titled “The Impact of Dollar Store Expansion on Local Market Structure and Food Access.” We are grateful
to Emek Basker, Paul Ellickson, and Mathieu Marcoux for helpful discussions of this article. We thank Victor
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1 Introduction

Over the past several decades, the dramatic rise of dollar store chains has reshaped the

US retail sector. The top three chains, Dollar General, Dollar Tree, and Family Dollar,

collectively opening stores at a rate of 3.75 stores per day over the past decade and by 2021,

over 75% of the US population lives within five miles of a dollar store, underscoring the

extensive footprint and market penetration of these retailers.

Originating in the 1950s, these chains initially targeted small towns and rural areas. Their

growth accelerated following the 2008 recession as worsening household finances increased

the demand for low-priced, small-format items. Notable subsequent developments include

the 2007 acquisition of Dollar General by a private equity firm, which enhanced logistics and

growth, and the 2015 merger of Dollar Tree and Family Dollar to compete more effectively

with Dollar General. The format’s expansion has been rapid; from 2018 to 2021, dollar stores

constituted about half of all new US retail openings, significantly outpacing the combined

stores of Walmart, CVS, Walgreens, and Target.

The expansion of dollar store chains has come under increasing scrutiny from policymak-

ers concerned with their impact on retail markets. Concerns center on whether their rapid

proliferation displaces existing retailers or deters new competitors, thereby limiting the vari-

ety of goods available to consumers. This issue is especially critical in areas where the entry

of dollar stores leads to the closure of local grocery outlets, impacting access to perishable

foods. In response, many municipalities have enacted regulations to curb the entry of new

dollar stores or have implemented dispersal policies to limit their store density.1

Despite ongoing public and policy debates, empirical evidence on the impact of dollar

stores is still emerging. This article uses new data and a structural approach to examine

their effects on market structure. Our analysis centers around two key aspects of this ex-

pansion. The first is spatial competition: dollar stores and rival store formats are spatially

1Cities that have banned or restricted dollar store entry include Birmingham, AL; Atlanta, GA; New
Orleans, LA; Akron, OH; Oklahoma City, OK; Tulsa, OK; and Fort Worth, TX. See https://ilsr.org/

dollar-store-restrictions/ [Last accessed: May 7th, 2025].
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differentiated. We explicitly model the strategic responses of competing retailers, in terms of

location choices, to the entry of dollar stores. One would expect the impact of dollar stores

to extend beyond the locations they enter, as in equilibrium, retail activity may relocate to

other parts of the market. The second aspect is the dynamic nature of this expansion: over

the sample period, dollar stores’ costs of operating stores decreases substantially, largely due

to a denser network of distribution centers. Accounting for such sources of non-stationarities

is crucial to accurately model dollar stores’ expansion strategy.

We build a dynamic structural model of the entry and exit choices of dollar store chains

and their local competitors and incorporate location choices as an integral part of firms’

strategy space. Local competitors include grocery and convenience stores.2 In practice, each

store’s entry and exit decisions are modelled as a dynamic oligopoly game following Ericson

and Pakes (1995) but with a spatial component along the lines of Seim (2006).

The purpose of this model is twofold. First, it allows us to account for equilibrium effects

from dollar store expansion. While the number of rival stores may decrease in locations—

defined as census tracts—near a dollar store, new entrants may subtitute to locations further

away from the dollar store, in a given market. Modeling the long-term spatial market

structure is therefore necessary to understand the net effects and distributional impact of

this expansion. Second, the model provides estimates of the size of dynamic entry and

investment costs, as well as the competitive effects between different store formats. This

enables us to explore various explanations for the success of the dollar store format.

The key challenges in estimating this game in a tractable way are the complex nature of

spatial competition, which results in a high-dimensional state space, and the non-stationary

dynamics stemming from the growth over time in dollar stores’ distribution center networks,

2We follow the definition of “grocery stores,” which are distinct from “supermarkets and supercenters,”
used by the USDA in its SNAP retailer panel. Grocery stores are primarily focused on selling food and
consumable products, carry all four staple food categories, have annual revenue below $2m, and are generally
independently owned. Supermarkets/centers have annual revenue above $2m, carry all four staple food
categories, are part of a retail chain, and typically have ten or more checkout lanes with registers, bar code
scanners, and conveyor belts. This definition has been used to define supermarkets in previous studies, e.g.,
Ellickson and Grieco (2013).
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which reduces their fixed costs of operating stores.

We take advantage of the fact that firms face a terminal choice when deciding whether or

not to exit, a special case of finite dependence (Arcidiacono and Miller (2011), Arcidiacono

and Ellickson (2011), Arcidiacono and Miller (2019)). This property simplifies estimation of

the game substantially as it allows us to recover the firms’ value functions directly in terms

of the period-ahead probability of making the terminal choice. We leverage this property

and estimate the model using the linear IV strategy of Kalouptsidi et al. (2020). The latter

article combines insights from the finite dependence approach and the GMM-Euler approach

(Aguirregabiria and Magesan (2018)) to propose a method (ECCP) that circumvents inte-

gration over the high-dimensional state space.3 Scott (2013) uses this approach to estimate

a dynamic model of agricultural land use, leveraging renewal actions. As a methodological

contribution, we extend the ECCP estimator from single-agent problems to dynamic games

with terminal actions, highlighting and addressing a selection problem arising in games. This

extension of the ECCP estimator is useful, more generally, because it simplifies significantly

the estimation of high-dimensional dynamic games with finite dependence.

To estimate this model, we rely on data from several sources. We track the number and

type of retail stores, including dollar stores, across the US using the Supplemental Nutrition

Assistance Program (SNAP) Retailer panel, a yearly panel of SNAP-authorized retailers from

2008 to 2019. An advantage of this dataset is that it covers small independent retail stores,

which are typically absent from other retail censuses used in the literature. We combine this

with data on dollar store distribution center locations and opening dates and demographic

information at the census-tract level from the US Census.

Our estimation results provide a number of direct findings. Dollar store chains have signif-

icantly lower costs of opening a new store than their independent rivals and are substantially

3Kalouptsidi et al. (2020) show how to incorporate serially correlated market-level unobserved heterogene-
ity in dynamic discrete choice problems, without having to specify the transition process for the market-level
variables. The latter is achieved by invoking rational expectations and replacing expected behavior with
observed (realized) behavior in the data. One benefit of this approach is that it does not require integrating
over the state space when evaluating period-ahead value functions.
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more profitable. Grocery and convenience stores suffer significant losses when located within

0-2 miles (mi) of a dollar store. Estimates also point to strong cannibalization effects within

chain in the 0-2mi radius. Further, dollar stores benefit from scale economies when locating

stores in moderate proximity (2-5mi radius), through lower operating costs. The growth in

dollar stores’ network of distribution centers leads to a reduction in store operating costs

over our sample period. The results suggest that dollar stores are able to enter cheaply

and operate with low fixed costs (increasingly so over time) due to store-level economies of

density and a larger network of distribution centers.4

The estimated model is used to evaluate the impact of dollar store expansion on the retail

landscape. We consider two main counterfactual scenarios: (i) an entry tax that raises dollar

stores’ entry costs (with varying tax rates), and (ii) a 1-mile dispersal policy that prevents

new dollar store entry near existing ones. This analysis allows us to quantify changes in the

spatial distribution of different retail formats (dollar, grocery, and convenience stores), the

extent of within-market reallocation of retail activity, and the resulting impact on policy-

relevant consumer outcomes, e.g. travel costs and retail proximity.

In response to these entry regulation policies, grocery and convenience store counts in-

crease modestly, especially in lower-income and densely populated markets and more so

under the entry tax than the dispersal policy. Under the entry tax rate that fully halts

dollar store expansion, markets experience on average a 18% and 7% increase in the number

of grocery and convenience stores respectively. The dispersal policy’s effect on independent

stores is more mixed. By shifting dollar store entry toward unserved locations, it leads to a

reduction in grocery or convenience store counts in some markets, by limiting these stores’

ability to spatially differentiate.

To isolate the spatial spillovers from the dispersal policy, we decompose changes in store

counts into direct and indirect effects. Direct effects capture the additional entry of grocery

4These findings are consistent with stores’ product assortments: by focusing sales on high-margin con-
sumables, dollar stores compete strongly with nearby grocery stores who are left relying on the sale of
low-margin produce with high operating costs. Our companion article, Caoui et al. (2024), uses scanner
data to document changes in spending by retail format and food categories.
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and convenience stores in locations where dollar store entry is restricted by the dispersal

policy. Indirect effects reflect the displacement of grocery and convenience stores, as dollar

stores are diverted into previously unserved or less contested locations. For every one-

unit reduction in dollar store presence in constrained locations, 0.34 dollar stores enter in

unconstrained locations. Conversely, for grocery and convenience stores, 20–27% of the direct

gains are offset by losses elsewhere within the same market. The dispersal policy reallocates

dollar store entry to locations with higher incomes and lower population density, indicating

that such policies may generate uneven distributional effects across neighborhoods within a

market.

These findings underscore the importance of accounting for spatial differentiation and

within-market reallocation when evaluating the net impact of entry regulation. The coun-

terfactual analysis also highlights how different policy tools—entry taxes and dispersal

rules—can reshape the competitive landscape, sometimes producing unintended consequences

for the retail format mix.

Related Literature. This article contributes to three areas of economic research. The

first focuses on the evolution of the US discount retail sector. Studies have analyzed the

impact of large retailers like Walmart and K-Mart on market structure (Jia (2008), Zhu and

Singh (2009), Basker and Noel (2009), Igami (2011), Ellickson and Grieco (2013), Grieco

(2014)), labor markets (Basker (2005)), and the role of economies of scale and density

(Holmes (2011), Ellickson et al. (2013)). Notably, Walmart’s entry has primarily affected

larger chain retailers within two miles (Ellickson and Grieco (2013)), whereas smaller retail-

ers were less impacted due to travel costs and horizontal differentiation. By contrast, the

entry strategy and market positioning of dollar stores suggest they may directly compete

with small local retailers, significantly impacting local retail markets and prompting distinct

policy considerations.

Our findings contribute to emergent research on the dollar store format. Through event

study analysis of large numbers of dollar store entries, Caoui et al. (2024) demonstrate
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that dollar store expansion is associated with a decline in the number of grocery stores and

reduced fresh produce consumption among low-income households with high travel costs.

Feng et al. (2023) highlight that, despite their limited food selections, dollar stores are

capturing an increasing share of food purchases, particularly in smaller markets. Lopez et al.

(2023) shows that dollar store entry is associated with grocery store closures, lower retail

employment and sales, with more pronounced effects in rural areas. Concurrently, Chenarides

et al. (2024) use a dynamic model and data from Texas to show that dollar stores generally

benefit supermarkets by displacing smaller competitors. Their approach differs from the

one adopted in this paper as they assume stationarity and model spatial differentiation as a

choice of market-level store density. Explicitly modelling firms’ location choices is important

because dollar store entry may lead to a spatial reallocation of rival store activity: e.g., the

number of grocery stores may decrease near dollar stores but increase further away in a

market. These equilibrium effects need to be accounted for when assessing the net impact of

this expansion or the effect of dispersal policies. Lastly, Schneier (2023) examines the effects

of the first dollar store entry on prices paid and shopping behavior, and Cao (2022) studies

their impact on retail variety and the consumer benefits from private-label products.

In studying the impact of dispersal policies, we contribute to the urban and IO literature

showing that place-based regulations can distort entry, reduce competition, and misallocate

resources in the retail sector (e.g., Schivardi and Viviano (2010), Suzuki (2013)). Our findings

add a new dimension: even policies aimed at redistributing entry–such as dispersal rules

that limit store clustering–can create negative spillovers. By forcing dollar stores into less

desirable or contested locations, dispersal rules may crowd out single-store retailers in those

locations and, in some cases, reduce overall grocery availability.

Finally, this article is related to the literature using dynamic games to study the market

structure impacts of retail chains (Arcidiacono et al. (2016), Zheng (2016), Igami and Yang

(2016), Hollenbeck (2017), Beresteanu et al. (2019), Fang and Yang (2022)). We depart

from the existing literature in two ways. First, we account for non-stationary dynamics
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inherent to the discount store industry: over the sample period, dollar store chains have

been expanding their networks of distribution centers; incorporating this dynamic aspect of

the industry is clearly important to better match observed entry patterns. Second, most

previous dynamic game studies (Zheng (2016) and Bodéré (2023) being exceptions) abstract

from the spatial nature of competition. Because retail location choices are crucial in shaping

the competitive environment (Ellickson et al. (2020)), we model firms’ entry decisions into

spatially differentiated locations as in Seim (2006) and Datta and Sudhir (2013).

The rest of the article proceeds as follows: Section 2 describes the data and institutional

details and provides descriptive statistics. Section 3 introduces the dynamic oligopoly model.

Section 4 discusses the identification and estimation of the dynamic game. Section 5 shows

the estimation results. Section 6 presents the counterfactual analysis. Section 7 concludes.

2 Industry Background, Data, and Descriptive Statis-

tics

In this section, we discuss the evolution of dollar store chains, outline our data sources,

and present descriptive statistics on the industry and our sample. The dollar store concept,

pioneered by Dollar General in 1955, featured a broad array of low-cost basic goods at a $1

price point. This model gained popularity, prompting similar strategies from competitors

like Family Dollar, established in 1959. By the 2000s, the market consolidated around three

main players: Dollar General, Family Dollar, and Dollar Tree. These chains compete by

offering low prices through a single or few fixed price points.

Unlike other discount retailers like Aldi, dollar stores achieve savings not by limiting

selection and focusing on private labels but by offering a moderate assortment of both major

brands and private labels.5 A dollar store typically occupies 8,000-12,000 sq ft and stocks

5For instance, private labels accounted for 12% of Dollar General’s merchandise mix (Shih et al. (2019)).
Hristakeva (2022) discusses retailers’ strategic assortment choices to secure preferential supplier contracts.
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10,000-12,000 SKUs. They reduce costs by employing few employees and by limiting their

perishable food offerings. Their inventory mainly includes basic consumables, seasonal items,

and irregular or outdated products from major brands. Their entry strategy involves entering

small, low-income markets overlooked by larger retailers, which we will explore in more detail

below. Dollar store chains have expanded rapidly, especially since the 2008 recession. By

2021, Family Dollar, Dollar General, and Dollar Tree operated approximately 7,100, 18,000,

and 4,350 stores respectively, totaling nearly 30,000 stores. In 2019, these chains generated

a combined revenue of $47 billion.

In 2015, Dollar Tree and Family Dollar merged, citing potential benefits such as targeting

a broader customer base, optimizing their real estate, and exploiting synergies in sourcing

and distribution.6 However, integration has been slow; the chains operated independently

in terms of store management and supply chains through 2019. For instance, store support

centers remained separate, and distribution networks operated independently until 2020

(Dollar Tree (2018) and Figure A3 discussed below).7 This justifies treating the chains as

distinct entities in our study period ending in 2019.

Data. We combine several data sources to study dollar store chains’ expansion and its effect

on local market structure.

The SNAP Retailer panel is a yearly dataset of SNAP-authorized retailers from 2008 to

2019, encompassing over 400,000 US retailers. It includes information on store location, chain

affiliation, store type, and covers stores such as dollar stores, convenience stores, grocery

stores, drugstores, gas stations, supermarkets, and supercenters. We classify stores by type

using the store type variable from this panel. To our knowledge, the SNAP retailer data

is novel in the economics literature.8 The primary advantages of this public dataset are its

comprehensiveness and annual frequency. Crucially, the panel includes small independent

stores, which are typically absent from other retail Census data used in the literature.

6“Dollar Tree completes acquisition of Family Dollar.” Dollar Tree, Press Release, July 6, 2015.
7In 2020, two new distribution centers serving both brands opened in Ocala, FL, and Rosenberg, TX.
8The dataset has been used in the geography literature studying retail proximity (e.g., Shannon et al.

(2018)).
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A drawback of this dataset is that entry into the SNAP program may not necessarily

indicate the start of operation of a physical store. As the SNAP program began in 2008,

there may have been delays in stores joining the program in the initial years. We address

this concern in two ways. For chains, we compare store counts in the SNAP panel against

publicly disclosed counts in chains’ annual reports, finding no significant discrepancies. For

independent stores, this approach is not possible. Instead, we drop the first two years from

the sample, restricting our analysis to 2010-2019.9

We collect market-level data on demographic characteristics from the Census and ACS

at the Census tract level. This lets us study how market characteristics and consumer

demographics affect dollar stores’ and other retailers’ entry behavior and profits. We also

gather data on the locations and opening dates of distribution centers for the three major

dollar store chains over time.

The three major dollar store chains added 12,870 stores, resulting from 14,554 store

entries and 1,684 exits. Independent retail stores also grew, driven by convenience stores

with 71,010 entries and 42,363 exits. The number of grocery stores decreased by 13% from

its peak in 2012. The number of supermarkets and supercenters remains relatively stable

over the sample period.10

Figure 1 shows the evolution of dollar store chains’ distribution centers from 2000 to

2019. The number of distribution centers increased from 14 to 42. Over our sample period

(2010-2019), this expansion reduced the average distance between a market and the nearest

distribution center by roughly 125 miles for Dollar General and slightly less for the other

two chains.11 Appendix Figure A3 shows the locations of distribution centers in 2019.

We use Census demographic data to document consumer heterogeneity across locations

9Several factors suggest that delayed enrollment is unlikely to pose a major concern in the remaining
sample (2010-2019). We model entry at the annual level, so short lags are unlikely to introduce measure-
ment error. The SNAP authorization process is streamlined, with decisions typically made within 45 days
(Byrne et al. (2024)). Participation among grocery retailers is near-universal in our period, and the financial
incentives to enroll are strong—SNAP benefits accounts for 5–10% of annual sales for most grocery stores,
and up to 20% in low-income areas.

10Appendix Figure A2 shows the total number of stores at the national level from 2010 to 2019.
11Details about the market definition are provided below.
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Figure 1: Distribution centers
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(b) Market to nearest distribution center distance

with varying dollar store densities. Table 1 shows summary statistics of Census demographics

for locations entered by dollar store chains before 2010, during 2010-2019, and those never

entered. Dollar store entry occurs in areas with lower income per capita and rents, and a

higher share of the population that is Black or below the poverty line.

Market Definition. In our empirical application, we restrict the sample to small and

medium-sized isolated markets for several reasons. First, dollar store entry strategy has

historically targeted smaller urban and more rural markets. As a result, these retail markets

have been most impacted by dollar store growth. Second, these markets are the primary

target of the policy debate around restricting dollar store expansion due to their greater

susceptibility to concerns around food access. Third, when accounting for spatial differenti-

ation, computational reasons limit the size of markets for which we can solve the dynamic

game. Therefore, we follow the approach in Seim (2006) and define markets as cities and in-

corporated places with populations between 5,000 and 150,000, and exclude markets within
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Table 1: Market Summary Statistics

(1) (2) (3)
Pre-2010 Entry Only 2010-2019 Entry Never Entered

N 9778 12872 50378
Mean Population 4689.9 4962.8 4263.9

(2193.5) (2566.1) (2295.8)
Mean Income 22686.3 23538.8 31315.2

(7520.7) (8178.7) (16696.5)
Mean Residential Rents 753.9 785.9 1064.8

(252.6) (275.4) (455.8)
Mean Share White .738 .739 .713

(.24) (.253) (.254)
Mean Share Black .166 .162 .127

(.225) (.234) (.210)
Mean Share in Poverty .176 .165 .136

(.108) (.106) (.118)
Share HH w/ Vehicle Access .911 .917 .904

(.084) (.091) (.135)
Mean Distance to DG DC 157.8 171.8 227.9

(134.1) (142.5) (292.9)
Mean Distance to DT DC 188.2 191.4 189.5

(111.2) (119.7) (239.8)
Mean Distance to FD DC 190.1 207.2 275.2

(124.2) (126.1) (296.3)

Notes: Unit of observation is the Census Tract. Means are computed using 2019 data. Standard
deviation across tracts appears in parentheses below each row.

10 miles of a city with a population greater than 5, 000 or within 20 miles of a city with a

population greater than 25, 000. Each market is partitioned into locations, which we define

at the Census tract level.12

We focus on competition between dollar store chains and independent grocery and con-

venience stores. The previous literature on retail competition has shown that competition

between grocery stores operates at relatively close range (1–2mi). As a result, in our em-

pirical specification, we allow the impact of competition to differ across distance bands.

Figure 2 illustrates the spatial distribution of locations, retail store counts per tract, and

distance bands in the market Rome, GA, as of 2010.

We exclude gas stations, drugstores, and supermarket chains from the set of strategic

players. In the case of supermarkets and big box retailers, previous literature (Ellickson and

12Census tracts may cross the boundaries of a Census place (city or town), in such instances, we define a
location as the intersection between the Census tract and the Census place. These intersections are obtained
using the Census Bureau’s geographic correspondence engine Georr. See https://mcdc.missouri.edu/

applications/geocorr2014.html.
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Figure 2: Census tracts and store counts in the market Rome, GA
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Grieco (2013), Grieco (2014)) has shown that their impact on small horizontally differentiated

retailers is limited. Nonetheless, we do control for the presence of the latter three formats (gas

stations, drugstores, supermarkets, and supercenters) as potential determinants in players’

payoffs, but we treat their evolution as exogenous.

Table 2 shows market and location-level demographic characteristics for our sample of

846 markets and Table 3 shows statistics on their market structure. These markets are small

in terms of population and with low average incomes. Average income per capita is $20,352

compared to roughly $58,000 for the US as a whole. A market contains 5.8 locations in
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total, 4.3 of which are “commercial” locations while the remainder are “residential.” We

define “commercial” locations as locations in which at least one store (of any type, e.g.,

dollar store, gas stations, drugstores, supermarkets) was active in any year in 2008-2019.

A typical market contains 2 dollar stores, 1 grocery store, 3 convenience stores, 2 gas

stations, and 3 supermarkets, but with wide variation across markets. We note the relatively

high number of supermarkets given our market definition. Supermarkets’ catchment areas

are, in general, much larger than our definition of a market (i.e., Census place). Our market

definition is motivated by a focus on spatial competition between dollar stores and other

small retailers. For supermarkets, markets are usually defined at larger geographic units,

e.g., at the county or MSA level.

Table 2: Descriptive Statistics: Markets and Locations (2010-2019)

Variable Mean Median Std.Dev Min Max

Market-level characteristics
Population 14,146 10,430 11,714 3,160 124,950
Income per capita (past 12 months) 20,352 19,779 4,617 7,796 86,593
Residential rents 624.8 593.6 135.8 318.1 1,801.0
Land area (sq mi) 15.2 10.1 20.0 1.6 301.7
Distance to closest distribution center (mi) 262.7 188.2 188.6 31.6 1,132.3
Number of locations 5.8 5.0 4.3 1.0 30.0
Number of commercial locations 4.3 3.0 3.2 1.0 28.0
Observations (Market-Year) 8,460

Location-level characteristics
Population 2,435 2,327 1,953 1 13,586
Income per capita (past 12 months) 21,121 20,546 6,661 2,183 112,495
Residential rents 640.6 611.7 161.4 189.4 2,134.7
Land area (sq mi) 2.6 1.6 5.5 0.0 165.0
Observations (Market-Location-Year) 49,150

Note: Distance to closest distribution center is the average over the three chains. “Number of locations”
corresponds to both residential and commercial locations. Commercial locations are those in which at
least one store (including gas stations, drugstores, and supermarkets) was active in any year between
2008 and 2019.

Table 4 shows descriptive statistics on the entry and exit dynamics of dollar store chains

and single-store competitors. For each action, the table shows the proportion of firm-market-

year observations. Single-store firms (grocery and convenience stores) have higher turnover

than dollar store chains, with entry rates of 12% versus 6%, and exit rates of 10% versus
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Table 3: Descriptive Statistics: Stores (2010-2019)

Variable Mean Median Std.Dev Min Max

Market-level characteristics
Dollar stores (DG, DT, FD) 2.75 2 2.25 0 21
Grocery stores 1.42 1 1.86 0 20
Convenience stores 4.71 3 5.34 0 52
Gas stations 2.85 2 2.76 0 24
Drug stores 1.41 1 1.42 0 11
Supermarkets/Supercenters 3.50 3 2.47 0 21
Observations (Market-Year) 8,460

Location-level characteristics
Dollar stores (DG, DT, FD) 0.64 0 0.82 0 5
Grocery stores 0.33 0 0.66 0 7
Convenience stores 1.10 1 1.36 0 11
Gas stations 0.67 0 0.87 0 8
Drug stores 0.33 0 0.61 0 3
Supermarkets/Supercenters 0.82 0 1.05 0 7
Observations (Market-Commercial Location-Year) 36,230

1.1%. Occasionally, dollar store chains open or close more than one store in the same

market-period. An incumbent chain may also open a second store in a market where it

already operates (2.7% of observations).

Table 4: Descriptive Statistics: Entry and Exit Dynamics

Potential Entrants Incumbents

Chains Single-store Chains Single-store

Don’t Enter 0.938 0.879 Close 2 stores 0.000
Build 1 store 0.061 0.121 Close 1 store 0.011 0.105
Build 2 stores 0.001 Do nothing 0.961 0.895

Build 1 store 0.027
Build 2 stores 0.001
Build 3 stores 0.000

Observations 9,578 58,758 15,802 52,102

Note: An observation is a firm-market-year. The table presents the proportion of obser-
vations for each particular action. Chains are assumed to be long-lived and are potential
entrants for all markets where they have not yet entered. The number of single-store po-
tential entrants (for grocery and convenience stores) is set to the total number of unique
stores which have operated at any point in the market over the period 2008-2019.
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3 Industry Model

In this section, we describe a structural model of the entry and exit game played by rival

retailers over time. This model serves two purposes. First, when we take this model to

the data, we can recover parameters informative on why the dollar store format has been so

successful at expanding and why dollar stores cause nearby grocery and convenience stores to

exit. Second, as we expect the effects of dollar store entry to be non-uniform across locations

in a market, we incorporate equilibrium effects (i.e., the reallocation of rival retailers away

from dollar store entry locations) into the model to evaluate the net impact of this expansion

via counterfactual simulations.

We start by presenting the basic structure of the model, as well as the equilibrium concept.

In the next section, we describe the empirical implementation and results.

Players. Each market contains two types of potential entrants: multi-store firms (i.e.,

chains) and a set of independent single-store firms. Markets are assumed to be independent

of each other.13 In what follows, we consider a market m that is partitioned into locations

l = 1, . . . , L. We index firms by i = 1, . . . , Im, and assume that marketm has Ic,m chains, the

remaining firms being single-store retailers. Time is discrete and denoted by t = 1, . . . ,∞.

State space. At the beginning of period t a chain’s network of stores is represented by the

vector nit = (ni1t, . . . , niLt), where nilt is the number of stores that firm i operates in location

l at period t. For simplicity, we assume that a chain can have up to n stores in a location,

such that nilt ∈ {0, 1, . . . , n}. Single-store firms can operate only one store per market. The

spatial market structure at period t is represented by the vector nmt = (nit)i∈Im . Let n−it

denote the network of stores of all firms other than i.

There are market and location characteristics that evolve exogenously over time, denoted

xmt = {xmlt}l∈L. These include the population, income per capita, and rents in each loca-

tion. Market-level characteristics include the number of other store types (e.g., drug stores,

13Actions by players in one market do not impact the equilibrium played in another market.
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supermarkets, and gas stations) that are not players in the game but can be payoff-relevant.14

For multi-store firms, let dimt denote market m’s distance from i’s closest distribution center

and dmt = (dimt)i∈Ic,m the vector collecting this variable for all chains. This vector evolves

deterministically over time, as the chains expand their network of distribution centers. The

transition matrices for these variables are denoted: f(xm,t+1|xmt) and ht(dim,t+1|dimt). The

latter transition matrix is deterministic.15 The rollout of distribution centers over time is a

key source of non-stationarity in our setting. As chains expand their networks, the result-

ing decrease in distance to distribution centers reduces the fixed cost of operating a store,

directly affecting entry decisions.16

Every period, the vector of public information variables includes the spatial market struc-

ture nmt and market and location-level characteristics. All these variables are publicly ob-

served and collected, from the perspective of firm i, into the vector Mj,i,t, with particular

realization j at time t. That is

Mj,i,t = (nit,n−it,xmt,dmt) (1)

Actions.

Multi-store firms We assume that a chain may open or close at most one store per period

per market.17 Let ait be the decision of firm i at period t such that: ait = l+ represents the

decision to open a new store at location l; ait = l− means that a store at location l is closed;

and ait = 0 the firm chooses to do nothing. The set of feasible choices for firm i at period

14This helps capture, for instance, dollar store chains’ tendency to locate away or near big-box stores such
as Walmart.

15We assume that players have perfect foresight over the evolution of distribution networks during the
sample period. While endogenizing distribution centers’ openings would be an interesting addition to the
model, this is complicated in practice because of the small number of distribution centers, which prevents
the precise estimation of these choice probabilities.

16We test whether this evolution can be captured by a stationary first-order Markov process by regressing,
for each chain, current distance (from a market to the nearest distribution center) on lagged distance and a
linear time trend, including market fixed effects. The time trend is highly significant, indicating systematic
time dependence that supports our modeling assumption of non-stationarity.

17There is a small number of observations (chain-market-period) where a chain closes two stores simul-
taneously or opens two stores or more simultaneously (see Table 4) We exclude these observations in the
estimation procedure described in Section 4.2.2.
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t, denoted A(nit), is such that A(nit) = {0} ∪ {l+ : nilt < n} ∪ {l− : nilt > 0}. Note that

this choice set can have more than L + 1 choice alternatives (if, for some l, 0 < nilt < n).

Multi-store firms are long-lived, that is, they can delay entry into the market. This feature

allows us to capture delays in entry because a chain expects to open a distribution center

closer to the market in a future period. Exit from a market (that is, nit = 0L given that

firm i was operating a store in t− 1) is a terminal action.18

Single-store firms A single-store firm can enter if it is a potential entrant: A(nit) = {0}∪{l+};

or it can exit if it is an incumbent: A(nit) = {0}∪{l− : nilt = 1}. Firms that exit or potential

entrants that stay out are replaced by a new set of potential entrants in the next period.

Firms’ choices are dynamic because of partial irreversibility in the decision to open a

new store, i.e., sunk costs. At the end of period t, firms simultaneously choose their network

of stores nt+1 with an understanding that they will affect their variable profits at future

periods. We model the choice of store location as a game of incomplete information, so that

each firm i has to form beliefs about other firms’ choices of networks. More specifically, there

are components of the entry costs and profits of a store that are firm-specific and private

information.

Flow profits. Firm i’s current profits, net of private information shocks, are

πit(ait,Mj,i,t) = V Pi(Mj,i,t)− FCit(Mj,i,t)− ECit(ait) + EVit(ait), (2)

where V Pi(Mj,i,t) are variable profits, FCit is the fixed cost of operating all the stores of

firm i, ECit is the entry cost of a new store, and EVit is the exit value of closing a store.

Variable profits V Pi(Mj,i,t) are obtained as the sum of profits over all stores firm i is

operating in the market at time t, that is

V Pi(Mj,i,t) =
L∑
l=1

niltvpi,l(Mj,i,t) (3)

18Exit by chains from a market is observed to be permanent in the sample and time horizon we consider.
This assumption implies that in the long run, the probability that “all chains have exited from the market”
converges to one. In practice, given annual exit rates of the order of 1-2% for chains, this would not be
expected to occur for many decades.
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where vpi,l(Mj,i,m,t) are per-store profits. For a store in location l, variable profits are

a function of the exogenous characteristics and the number of (own and rival) stores in

location l and surrounding locations. Following Seim (2006), we capture this dependence by

defining these variables for various distance bands, b = 1, . . . , B, around location l

vpi,l(Mj,i,t) =
B∑
b=1

αb
ix

b
mlt +

B∑
b=1

βb
ion

b
ilt +

B∑
b=1

F∑
f=1

βb
ifn

b
flt (4)

where f denotes the type of competitors (i.e., dollar store, grocery store, convenience store),

and b are distance bands around location l (e.g., 0-2 miles, 2-5 miles). The variables xbmlt,

nb
ilt, and n

b
flt correspond to exogenous location characteristics, own stores, and rival stores

of type f in distance band b around location l. The second term captures cannibalization

and/or economies of density, the third term captures business stealing between rival stores.

Importantly, for each store type f , profits depend on population at various distance bands

around the store. This specification allows us to account for the fact that retail formats may

differ in their trade areas: i.e., a grocery store may draw consumers from a wider radius than

convenience stores.

For chains, fixed operating costs depend on the distance to the closest distribution center

and capital costs (proxied by residential rents). If a chain is operating at least one store in

the market, fixed costs are

FCit(Mj,i,t) = θFC
1,c dimt +

L∑
l=1

θFC
2,c rentmlt (5)

For a single-store firm operating in location l, fixed costs depend only on capital costs:

FCit = θFC
s rentmlt.

The specification of entry costs is

ECit(ait) =
L∑
l=1

1{ait = l+}θEC
i . (6)

In estimation, we will restrict entry costs to depend only on the type of the firm f but not

the identity of firm i.
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The exit value is specified as:

EVit(ait) =
L∑
l=1

1{ait = l−}θEV
i . (7)

Similarly to entry costs, the exit value is assumed to depend only on the type of the firm f .

At the beginning of period t, each firm draws a vector of private information shocks

associated with each possible action ϵit = {ϵit(a)}a∈A(nit). We assume that the shocks ϵit

are independently distributed across firms and over time and have a cumulative distribution

function G(.) that is strictly increasing and continuously differentiable with respect to the

Lebesgue measure. These two assumptions allow for a broad range of specifications for the

ϵit, including spatially correlated shocks. In our application, these shocks will be distributed

Type 1 extreme value, scaled by a parameter θϵ.

It will be convenient to distinguish two additive components in the current profit function:

Πit(ait,Mj,i,t, ϵit) = πi(ait,Mj,i,t) + ϵit(ait). (8)

Value function and Equilibrium concept. We focus on Markov-Perfect Bayesian Nash

Equilibria (MPE). Other equilibrium concepts can be considered in this setting: e.g., the

partially and/or nonstationary oblivious equilibrium of Weintraub et al. (2008) and Benkard

et al. (2015). However, for the small and medium-sized isolated markets we consider retail-

ers have arguably accurate information on store counts and demographics in each location.

Therefore, for this type of market, we believe the MPE concept better captures the informa-

tion set of both single-store firms and chains.

We first define firm strategies, value functions, and then the equilibrium conditions.

A firm’s strategy, at time t, depends only on its payoff relevant state variables (Mj,i,t, ϵit).

A strategy profile is denoted

α = {αi,t(Mj,i,t, ϵit))}i∈I,t≥0.
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Given strategy profile α, firm i’s value function satisfies

V α
i,t(Mj,i,t, ϵit) = max

ait∈A(nit)

{
vαi,t(ait,Mj,i,t) + ϵit(ait)

}
(9)

where vαi,t(ait,Mj,i,t) are choice-specific value functions, defined as

vαi,t(ait,Mj,i,t) = πi(ait,Mj,i,t)

+ β

∫
V α
i,t+1 (Mj,i,t+1, ϵi,t+1) dG(ϵi,t+1)dFt(Mj,i,t+1|ait,Mj,i,t)

(10)

where the next-period state Mj,i,t+1 is formed of the next-period spatial market structure

nt+1, and market and firm-level covariates (xm,t+1,dm,t+1). The distribution over next-period

states is given by the transition probabilities f(xm,t+1|xm,t) and ht(dm,t+1|dm,t) of exogenous

states, and the distribution of rivals’ shocks Πj ̸=ig(ϵj,t) and strategies αj for j ̸= i.

A MPE is a strategy profile α∗ such that for every player, state, and period

α∗
i,t(Mj,i,t, ϵit) = arg max

ait∈A(nit)

{
vα

∗

i,t (ait,Mj,i,t) + ϵit(ait)
}

(11)

The probability that firm i chooses action ait in period t given state Mj,i,t (hereafter, the

conditional choice probability or CCP) is defined as

Pα
t (ait|Mj,i,t) = Pr(αi,t(Mj,i,t, ϵit) = ait|Mj,i,t) (12)

We find it convenient to express the choice-specific value function as a function of CCPs

instead of strategies. That is,

vPi,t(ait,Mj,i,t) = πi(ait,Mj,i,t)+β
∑
a−it

∫
V

P

i,t+1 (Mj,i,t+1) dFt(Mj,i,t+1|Mj,i,t, at)P−i,t(a−it|Mj,i,t)

(13)

where at = (ait, a−it) and V
P

i,t is the ex-ante value function expressed before the realization
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of the private shock ϵit

V
P

i,t(Mj,i,t) =

∫
max

ait∈A(nit)

πi(ait,Mj,i,t) + ϵit(ait)

+β
∑
a−it

∫
V

P

i,t+1 (Mj,i,t+1) dFt(Mj,i,t+1|Mj,i,t, at)P−i,t(a−it|Mj,i,t)

 dG(ϵit).

(14)

If private shocks are distributed Type 1 extreme value (with scale parameter θϵ), an

optimal strategy for firm i will map into conditional choice probabilities of the form

Pt(ait|Mj,i,t,P) =
exp

(
vPi,t(ait,Mj,i,t)

θϵ

)
∑

a′∈A(nit)

exp
(

vPi,t(a
′,Mj,i,t)

θϵ

) . (15)

Simultaneity in players’ moves can cause multiplicity of equilibria in this context. The

CCP-based estimation approaches we use circumvent this difficulty by relying on the best-

response mapping as estimating equations (Pesendorfer and Schmidt-Dengler (2008), Kaloupt-

sidi et al. (2020), Bugni and Bunting (2021)). For our counterfactual analysis, we initialize

the computation algorithm at a large number of starting values and iterate to a fixed point.

We found no evidence of multiple equilibria in the counterfactual exercise.

Finite dependence. The model features a terminal choice—exit without the possibility

of re-entry—a special case of finite dependence (Altuǧ and Miller (1998), Arcidiacono and

Miller (2011)). Finite dependence eases the calculation of ex-ante and choice-specific value

functions because these can be expressed directly in terms of the period-ahead probabilities

of choosing the terminal choice. Moreover, it allows us to incorporate non-stationarities

into the model without making out-of-sample assumptions about players’ actions for periods

beyond the sample horizon (which is the year 2019).

Lemmas 1 and 2 in Arcidiacono and Miller (2011) show that the ex-ante value function

can be written as the sum of the choice-specific value function evaluated at any arbitrary

action (ã) and a known function of the CCPs. In particular, if the ϵit(ait) are independent
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Type 1 extreme value, then

V
P

i,t+1 (Mj,i,t+1) = vPi,t+1(ã,Mj,i,t+1) + γ − ln (Pi,t+1(ã|Mj,i,t+1)) (16)

where γ is the Euler constant. A natural choice for the action ã is exit. If this terminal

choice is chosen, the choice-specific value function is known up to the structural parameters

and given by (where e refers to exit)

vPi,t+1(a
′
i = e,Mj,i,t+1) =

 πi(a
′
i = e,Mj,i,t+1) if i is an incumbent in l

0 if i is potential entrant
(17)

This allows us to replace the ex-ante value function V
P

i,t+1 (Mj,i,t+1) by known functions

of the structural parameters and CCPs. Equation (16) is used extensively in the estimation

approach presented below. Importantly, chain entrants differ from single-store entrants in

that they are long-lived: they can delay entry into a market without being replaced by a new

potential entrant. As a result, the only terminal choice for a chain is exit from incumbency.

4 Estimation of the Dynamic Game

4.1 Identification

As is standard in the literature on the identification of dynamic decision problems (Rust

(1994), Magnac and Thesmar (2002), Bajari et al. (2015)), the discount factor and the

distribution of firm shocks (β,G) are assumed to be known.19

Aguirregabiria and Suzuki (2014) study the identification of market entry and exit games.

They show that the level of fixed costs, entry costs, and exit value are not separately iden-

tified.20 When estimating the model, we normalize the exit value to zero. A consequence of

19Markets are independent, therefore, identification is based on a cross-section of market-paths assuming
that markets with the same observable characteristics feature the same equilibrium. Identification in this
non-stationary setting requires a large cross-section of markets to be observed at each specific time period
to provide sufficient variation.

20More recent contributions include Kalouptsidi et al. (2021b) and Kalouptsidi et al. (2021a).
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this “normalization” restriction is that the estimated entry costs will reflect the true sunk

costs (entry cost net of exit value), and estimated fixed costs will reflect the true fixed costs

in addition to the exit value scaled by (1− β).

Variable profits are identified from exogenous variation in market and location-level char-

acteristics (i.e., income, population, rents) and the geographic layout of markets (i.e, the

distance between each pair of locations in a market) creating variation in these exogenous

variables by distance bands around each location. The effects of rivals’ stores on profits (i.e.,

competitive effects) are identified in two ways: for chains, we rely on exogenous variation in

the distance to the closest (rival) distribution center which shifts rival chains’ entry decisions

without directly affecting own variable profits; for single-store firms, competitive effects are

identified from variation in the incumbency status of rival single-store firms.

4.2 Estimation Approach

4.2.1 Baseline approach

We follow a two-step approach. In a first step, consistent estimates of the CCPs are ob-

tained. We discuss this first step and the treatment of unobserved heterogeneity in detail in

Section 4.2.2. In the remainder of this section, we focus on the estimation of the structural

parameters given first-step estimates of the CCPs.

Estimation methods such as policy evaluation (Aguirregabiria and Mira (2007)) or for-

ward simulation (Bajari et al. (2007)), are not applicable to non-stationary games without

restrictive assumptions about CCPs beyond the sample period (post-2019).21 Furthermore,

location decisions and multi-store firms generate a high-dimensional state space, making

these methods computationally infeasible without approximations.

We address these challenges in two ways. First, we exploit the finite dependence property

(Arcidiacono and Miller (2011, 2019)). This allows us to express the period-t choice-specific

21For example, forward simulation requires knowing the CCPs far into the future. These CCPs are not
available if the game is non-stationary and the probabilities are indexed by time.
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value function in terms of known period-t + 1 CCPs and the structural profit function.

However, this does not eliminate the need to integrate these value functions over a high-

dimensional state space. To address this, we adopt the linear IV strategy of Kalouptsidi

et al. (2020), which combines insights from finite dependence and the GMM-Euler approach

of Aguirregabiria and Magesan (2018). The resulting method—ECCP—invokes rational ex-

pectations and replaces expected behavior with observed outcomes, yielding linear estimating

equations that bypass numerical integration.

We extend the ECCP estimator of Kalouptsidi et al. (2020) from single-agent dynamic

discrete choice problems to dynamic games. To our knowledge, this marks the first applica-

tion of this linear regression approach in a game-theoretic context. This extended estimator

is particularly useful for settings with high-dimensional state spaces and finite dependence,

or for analyzing entry dynamics in other non-stationary environments, such as those charac-

terized by information waves (Chi (2025)). The estimation strategy is also useful in settings

where the estimated structural objects can serve as sufficient statistics to assess policy im-

pacts, or where researchers wish to explore multiple alternative specifications efficiently.

We derive the estimating equations and outline the intuition behind our approach using

the case of a chain potential entrant. The case of single-store firms and chain incumbents is

presented in Appendix A.1.

A chain entrant is long-lived and can delay entry to a later period (e.g., if the chain

anticipates opening a distribution center closer to the market in the future). The choice-

specific value function from entering into location l (ait = l+) is given by

vPi,t(l+,Mj,i,t) = −θEC
i + β E[vpi,l(Mj,i,t+1)− FCi + γ − lnPi,t+1(l−|Mj,i,t+1)|l+,Mj,i,t]

(18)

where Equation (16) is used with ã set to exit (l−) in t+1. The choice-specific value function
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from staying out (ait = 0) is given by

vPi,t(0,Mj,i,t) = β E
(
vPi,t+1(a

′
i = l+,Mj,i,t+1) + γ − ln(Pi,t+1(l+|Mj,i,t+1)|0,Mj,i,t

)
= β E

(
−θEC

i + γ − lnPi,t+1(l+|Mj,i,t+1)

+ β E[vpi,l(Mj,i,t+2)− FCi + γ − lnPi,t+2(l−|Mj,i,t+2)]|0,Mj,i,t)

(19)

The first equality uses Equation (16) with ã set arbitrarily to l+, in period t + 1. The

second equality uses Equation (16) with ã set to l− (exit) in period t + 2. Equation (19)

states that, if an entrant stays out, they internalize the option value from entering at a later

period. Differences in these choice-specific value functions can alternatively be expressed

using current-period CCPs as

vPi,t(l+,Mj,i,t)− vPi,t(0,Mj,i,t) = log

(
Pi,t(l+|Mj,i,t)

Pi,t(0|Mj,i,t)

)
(20)

Plugging in Equations (18) and (19) into the LHS of Equation (20) yields an optimality

condition that can be re-expressed as moment conditions that avoid explicit integration.

Under rational expectations, the conditional expectation of future CCPs and profits equals

their realized value plus an expectational error orthogonal to the period-t state variables.22

Define the expectational errors as the difference between the expectations and the realiza-

tions of the random variables. For potential entrants who stay out, there are two expectations

(over t+1 and t+2 states). Correspondingly, the expectational errors (wit, ui,t+1) are defined

as

wit = E
[
−θEC

i + γ − lnPi,t+1(l+|Mj,i,t+1)|0,Mj,i,t

]
−
(
−θEC

i + γ − lnPi,t+1(l+|M∗
j,i,t+1)

) (21)

ui,t+1 = E [vpi,l(Mj,i,t+2)− FCi + γ − lnPi,t+2(l−|Mj,i,t+2)|0,Mj,i,t]

−
(
vpi,l(M∗

j,i,t+2)− FCi + γ − lnPi,t+2(l−|M∗
j,i,t+2)

) (22)

22This idea originates in the estimation of continuous choice dynamic models using Euler equations (e.g.,
Hansen and Singleton (1982)). Other approaches to simplify the computation of the expected value function
in high-dimensional settings include approximating this function using the averages of value functions of past
iterations (Pakes and McGuire (2001), Imai et al. (2009), Ishihara and Ching (2016)).
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where the starred variables M∗
j,i,t+1 and M∗

j,i,t+2 are realized (observed) states in the data.

For potential entrants who enter (Equation (18)), we define the expectational error vit as

vit = E[vpi,l(Mj,i,t+1)− FCi + γ − ln(Pi,t+1(l−|Mj,i,t+1)|l+,Mj,i,t]

−
(
vpi,l(M∗

j,i,t+1)− FCi + γ − ln(Pi,t+1(l−|M∗
j,i,t+1)

) (23)

These errors satisfy, for any function g(.) of period-t states, the orthogonality conditions:

E [g(Mj,i,t)
′[wit, vit, ui,t+1]] = 03 (24)

The moment conditions (Equation (24)) do not require integration over the state space

but only averaging over the sample observations. The computational cost of estimating the

structural parameters using GMM based on these moment conditions does not depend on

the dimension of the state space.

In a game setting, replacing these moment conditions by their sample counterparts (in

the form of a linear IV regression as in Kalouptsidi et al. (2020)) will not yield consistent

estimates of the structural parameters. The key issue is that rivals’ states are endogenous:

they are affected by the focal firm’s past action, a feature absent in single-agent problems.

Specifically, the error ui,t+1 (Equation (22)) involves an expectation overMj,i,t+2, conditional

on ait being 0: e.g., rivals’ states in t+2 are conditional on focal firm i choosing to stay out

in period t. Since the empirical distribution of rivals’ states in t+ 2 reflects realized actions

rather than counterfactual ones (i.e., ait = 0), sample averages will not generally converge

to the relevant conditional expectation.23

To address this selection problem and ensure that the empirical counterpart of the mo-

ment condition (Equation (24)) yields consistent estimates of the structural parameters, we

use an importance sampling approach (Kloek and van Dijk (1978), Geweke (1989)). Define

23This selection problem only concerns players’ states in t+2. In t+1, rivals’ states do not depend on ait
(conditional on the current state) because firms take their actions simultaneously between t and t+ 1. For
example, the observed distribution of stores operated by Dollar Tree and Family Dollar in t+ 2 depends on
Dollar General’s entry choice in period t.
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the importance weights

ψa1,a2(n−i,t+2|Mj,i,t) ≡
P (n−i,t+2|ait = a1,Mj,i,t)

P (n−i,t+2|ait = a2,Mj,i,t)
. (25)

Intuitively, the weight ψa1,a2(n−i,t+2 | Mj,i,t) is a likelihood ratio: it reflects how much more

likely the period-t+2 state of rivals would be if focal firm i had taken action a1 rather than

a2 in period t, conditional on the current state Mj,i,t. These weights are well-defined for any

pair (a1, a2) because the support of n−i,t+2 is independent of ait.
24 The following lemma is a

direct consequence of the definition of conditional expectation.

Lemma 1. Let f(.) be a measurable function such that E
[
|f(Mj,i,t+2)|

∣∣ ait = a,Mj,i,t

]
<∞

for a ∈ {0, ã}. Then, for every alternative action ã,

E
[
f(Mj,i,t+2)

∣∣ ait = 0,Mj,i,t

]
= E

[
f(Mj,i,t+2)ψ0,ã(n−i,t+2|Mj,i,t)

∣∣∣ ait = ã,Mj,i,t

]
.

Proof . Let Mj,i,t+2 = (ni,t+2,n−i,t+2,xm,t+2,dm,t+2). The vectors xm,t+2 and dm,t+2

evolve exogenously and ni,t+2 is a deterministic vector because firm i operates one store in

location l in period t+ 2 (Equation (19)). We have that

E
[
f(Mj,i,t+2)

∣∣ ait = 0,Mj,i,t

]
=

∑
n−i,t+2,x,d

f(ni,t+2,n−i,t+2,x,d)P (n−i,t+2|ait = 0,Mj,i,t)Px,d(x,d|Mj,i,t)

=
∑

n−i,t+2,x,d

f(ni,t+2,n−i,t+2,x,d)ψ0,ã(n−i,t+2|Mj,i,t)P (n−i,t+2|ait = ã,Mj,i,t)Px,d(x,d|Mj,i,t)

= E
[
f(Mj,i,t+2)ψ0,ã(n−i,t+2|Mj,i,t)

∣∣ ait = ã,Mj,i,t

]
,

(26)

which proves the identity.

In constructing the sample moment counterparts, functions of Mj,i,t+2 are scaled by the

importance weights ψ0,ã, where ã is the action played in the data. Define the re-weighted

24The logit shocks imply that CCPs have full support conditional on Mj,i,t.
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version of the expectational error ui,t+1, for each ait = ã as

ũi,t+1 = E [vpi,l(Mj,i,t+2)− FCi + γ − lnPi,t+2(l−|Mj,i,t+2)|0,Mj,i,t]

− ψ0,ã(n
∗
−i,t+2|Mj,i,t)

(
vpi,l(M∗

j,i,t+2)− FCi + γ − lnPi,t+2(l−|M∗
j,i,t+2)

) (27)

Lemma 1 ensures that E[ũi,t+1|Mj,i,t]–and a fortiori the moment condition E[ũi,t+1g(Mj,i,t)]–

equals zero for each ait = ã.25 Substituting Equations (18)–(20) and replacing expectations

with observed values and expectational errors (Equations (21), (23), and (27)), we estimate

structural parameters via the following regression:

Y entrant
it =

[
−θEC

i + β(vpi,l(M∗
j,i,t+1)− FCi)

]
−
[
−βθEC

i + ψ0,ã(n
∗
−i,t+2|Mj,i,t)β

2(vpi,l(M∗
j,i,t+2)− FCi)

]
+ (vit − wit − βũi,t+1)

(28)

where the left-hand side variable collects known functions of the CCPs

Y entrant
it = log

(
Pi,t(l+|Mj,i,t)

Pi,t(0|Mj,i,t)

)
− β[γ − lnPi,t+1(l−|M∗

j,i,t+1, ait = l+)]

+ β[γ − lnPi,t+1(l+|M∗
j,i,t+1, ait = 0)]

+ β2ψ0,ã(n
∗
−i,t+2|Mj,i,t)[γ − lnPi,t+2(l−|M∗

j,i,t+2)],

(29)

and regressors entering the profit function in t+ 1 and t+ 2 (which may be correlated with

the expectational errors) are instrumented using the values of these regressors in period t.

26

25Omitting the reweighting would bias the estimated choice-specific value of staying out, vPi,t(0,Mj,i,t).
The expected number of rival firms operating in t + 2 would be under-estimated, because we would be
assuming the focal firm stayed out in period t, whereas in the data, the firm may have entered. To match
observed CCPs, the model would then require a stronger (more negative) effect of the number of active rivals
on profits, biasing the estimated parameters away from zero.

26To evaluate the robustness of our estimation results, we also implement an alternative estimation ap-
proach, in Appendix A.2, that does not rely on finite dependence and instead solves directly for the ex-ante
value function. We recover similar parameter estimates and payoff functions.
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4.2.2 Location-level unobserved heterogeneity and first-step estimates

The presence of unobserved heterogeneity is a common concern in many empirical settings

and can introduce an endogeneity problem in the context of dynamic games of entry and exit

as it leads to biased estimates of competition. If unobserved heterogeneity is not controlled

for, firms may appear to favor locations and markets with large numbers of competitors,

which ultimately will yield economically implausible estimates of competitive effects.

We incorporate location-level unobserved heterogeneity via a proxy variable. This ap-

proach has been used in previous studies of market entry, e.g., Collard-Wexler (2013), and

has the advantage of being computationally light. This is particularly important as a mar-

ket is partitioned into multiple locations, which may differ in their attractiveness, yielding

multi-dimensional unobserved heterogeneity. The proxy variable strikes a balance between

granularity in the level of unobserved heterogeneity and computational feasibility. We define

a location-level proxy for unobserved heterogeneity as the maximum number of establish-

ments (of all types, including drugstores, supermarkets, and gas stations) simultaneously

operating in a given location over the period 2008-2019.27

The importance of controlling for unobserved heterogeneity is illustrated in Table 5.

This table shows estimates of the CCPs for dollar store chains via a flexible multinomial

logit regression.28 An entrant chain can either build a store in one of the locations in the

27Our proxy-variable approach to addressing endogeneity in controlled state variables is closely related to
recent IV-based methods such as Berry and Compiani (2023), as well as the finite mixture framework of
Kasahara and Shimotsu (2009). Like IV methods, our approach aims to address the correlation between
observed state variables (e.g., number of incumbents) and unobserved location heterogeneity. Instead of using
instruments, we include a proxy variable—business density—constructed from long-run market outcomes,
which we assume captures the relevant heterogeneity. This offers a tractable solution in settings with high-
dimensional heterogeneity, where each location differs in its appeal, though at the cost of relying on the
strength of the proxy. Our method also aligns with the logic in Kasahara and Shimotsu (2009), in that it
leverages observed variation in covariates to control for latent unobserved location heterogeneity.

28In an ideal world, CCP would be estimated nonparametrically. For instance, Kalouptsidi et al. (2020)
assume that the CCPs are identified from a large cross-section of agents in each market-period. This approach
is not possible in our setting given the size of the state space, the large number of choices that each firm
has, and the size of the observed sample. For example, a market with four locations, three potential grocery
stores, three potential convenience stores, and the three chains (which can open at most 2 stores per location)
has a spatial market structure nmt with more than 650 million possible states. Location-level demographic
states in xmt further increase the size of the state space.
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market or stay out. An incumbent chain can do nothing, build an additional store in one of

the locations, or close one of its existing stores.29 We control for location-level demographic

variables, cost shifters (e.g., the distance between the market and the closest distribution

center), the location-level competitive environment, and market-level characteristics (e.g.,

other store types such as gas stations and supermarkets). We allow the parameters to

differ for the decision to open and close a store. The first two columns correspond to a

specification without unobserved heterogeneity. The last two columns include the proxy for

unobserved heterogeneity (“Business Density”). To allow strategies to depend on the roll-out

of distribution centers, we also include year dummies.

The effect of competition on the likelihood of building a store is biased upward when

business density is not controlled for (column 2) relative to when it is included (column

4). In column 2, many competition coefficients are in fact positive, reflecting agglomeration

effects due to unobserved location-level amenities.30 This is not the case when location-level

business density is included (column 4).

Similarly to chains, we estimate the CCP for single-store firms, controlling for business

density. We include the regression results in Appendix Table A2 for completeness.

5 Estimation Results

This section presents our estimates of the structural parameters entering single-period pay-

offs. Of particular interest are the magnitude of strategic interactions across store formats,

the presence and size of economies of density or cannibalization, and the role of chains’

expanding network of distribution centers in driving the reduction in store operating costs.

Table 6 shows estimates of normalized store profits and entry costs. The effect of most

variables decays with distance from the store location, highlighting the importance of spa-

tial differentiation in retail competition. For all retailers, profits are increasing with the

29The small number of observations where a chain opens more than one store in a period are not included
when calculating the likelihood.

30This upward bias persists even when year FE are included.
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Table 5: Multinomial logit of multi-store firms’ choice

Multi-store firms Multi-store firms

Close store in l Build store in l Close store in l Build store in l

Entrant 11.905 (1.773) 2.906 (1.726)
Incumbent -19.433 (4.553) 9.898 (1.770) -17.237 (4.670) 1.044 (1.726)

Location-level characteristics
Population (0-2 mi) 0.552 (0.315) 0.209 (0.064) 0.608 (0.313) 0.190 (0.066)
Population (2-5 mi) -0.160 (0.053) 0.056 (0.028) -0.155 (0.054) 0.040 (0.026)
Income per capita (0-2 mi) 1.162 (0.464) -0.817 (0.170) 0.857 (0.470) -0.415 (0.168)
Income per capita (2-5 mi) 0.124 (0.033) -0.015 (0.018) 0.124 (0.034) -0.012 (0.017)

Cost shifters
Distance to own distribution center -0.055 (0.120) -0.205 (0.050) -0.055 (0.128) -0.203 (0.047)
Distance to distribution center (rival 1) 0.069 (0.137) 0.024 (0.049) 0.095 (0.147) 0.020 (0.047)
Distance to distribution center (rival 2) 0.447 (0.136) -0.039 (0.052) 0.467 (0.144) -0.040 (0.049)
Median residential rent 0.045 (0.393) -0.442 (0.172) -0.075 (0.396) -0.242 (0.177)
Number of own chain stores in market -0.407 (1.135) 1.190 (0.311) -0.531 (1.100) 0.942 (0.319)

Measures of competition
Number of rival chain stores (0-2 mi) 0.345 (0.190) -0.132 (0.089) 0.227 (0.191) -0.394 (0.084)
Number of rival chain stores (2-5 mi) 0.164 (0.247) -0.199 (0.102) 0.101 (0.245) -0.176 (0.093)
Number of rival grocery (0-2 mi) -0.071 (0.153) 0.026 (0.066) -0.103 (0.155) -0.311 (0.066)
Number of rival grocery (2-5 mi) 0.296 (0.240) -0.222 (0.087) 0.351 (0.240) -0.273 (0.085)
Number of rival convenience (0-2 mi) -0.044 (0.122) 0.030 (0.060) -0.187 (0.133) -0.243 (0.056)
Number of rival convenience (2-5 mi) 0.268 (0.157) 0.025 (0.074) 0.235 (0.158) 0.002 (0.070)
Number of own chain stores (0-2 mi) 0.343 (1.071) -1.112 (0.242) 0.425 (1.038) -1.191 (0.246)
Number of own chain stores (2-5 mi) -0.052 (0.648) 0.012 (0.229) -0.041 (0.633) 0.159 (0.228)

Market-level characteristics
Population -0.522 (0.386) -0.662 (0.119) -0.485 (0.392) -0.290 (0.111)
Number of gas stations -0.016 (0.133) -0.039 (0.065) -0.109 (0.136) 0.096 (0.061)
Number of drug stores -0.068 (0.219) 0.271 (0.083) 0.036 (0.230) 0.159 (0.076)
Number of supermarkets 0.035 (0.277) 0.398 (0.101) 0.163 (0.282) 0.318 (0.089)

Year FE No Yes
Business Density No Yes

Observations 24,923 24,923
Log Likelihood -6,289.707 -5,937.582

Note: Standard errors are clustered by market. The baseline alternative is “do nothing.” Dollar figures are in 2010$. Business
density is defined as the maximum number of establishments simultaneously operating in location l over the period 2008-2019.
Distance to distribution center is at the market level, residential rent is at the location level. All continuous variables and
store counts are in log.

population within 2 miles of the store location. Dollar store chains favor locations with

lower income. Profits for chains are decreasing in the distance to the closest distribution

center. The majority of competition effects are precisely estimated and with the expected

magnitude.

To help interpretation, we convert our profit estimates into dollars by calibrating the
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Table 6: Estimates of store profits and costs

Chains Grocery Store Convenience Store

Parameters Estimate s.e. Estimate s.e. Estimate s.e.

Constant 2.616 (0.444) -1.177 (0.485) -0.876 (0.220)
Location-level characteristics
Population (0-2 mi) 0.049 (0.015) 0.156 (0.031) 0.069 (0.010)
Population (2-5 mi) 0.010 (0.005) 0.004 (0.006) 0.002 (0.004)
Income per capita (0-2 mi) -0.175 (0.049) -0.016 (0.048) 0.017 (0.021)
Income per capita (2-5 mi) -0.004 (0.003) 0.001 (0.004) -0.000 (0.002)

Fixed cost components
Median residential rent -0.072 (0.056) 0.050 (0.050) 0.009 (0.028)
Distance to own distribution center -0.058 (0.020)

Measures of competition and cannibalization
Number of rival chain stores (0-2 mi) -0.070 (0.023) -0.128 (0.024) -0.069 (0.012)
Number of rival chain stores (2-5 mi) -0.048 (0.022) -0.005 (0.022) -0.018 (0.011)
Number of rival grocery stores (0-2 mi) -0.074 (0.022) -0.030 (0.021) -0.033 (0.011)
Number of rival grocery stores (2-5 mi) -0.073 (0.025) -0.068 (0.025) -0.035 (0.014)
Number of rival convenience stores (0-2 mi) -0.073 (0.022) -0.104 (0.017) -0.057 (0.009)
Number of rival convenience stores (2-5 mi) 0.026 (0.022) -0.012 (0.020) -0.005 (0.010)
Number of own chain stores (0-2 mi) -0.094 (0.045)
Number of own chain stores (2-5 mi) 0.077 (0.024)

Market-level characteristics
Population -0.092 (0.028) -0.099 (0.034) -0.059 (0.013)
Number of gas stations 0.016 (0.019) -0.002 (0.019) -0.052 (0.011)
Number of drug stores 0.068 (0.022) 0.009 (0.024) -0.001 (0.014)
Number of supermarkets/centers 0.099 (0.025) -0.036 (0.025) 0.034 (0.017)

Dynamic investment costs
Entry cost 2.495 (0.240) 5.515 (0.063) 5.878 (0.052)
Entry cost of additional store 9.713 (0.165)

Note: Standard errors are obtained via bootstrap of market-histories (200 replications). All continuous variables and store
counts are in log. Business density and year fixed effects are controlled for. Residential rent is at the location level.

scale parameter of firm shocks θϵ to match revenue data for all dollar stores operating in the

markets under consideration, obtained from Nielsen TDLinx.31 Table 7 shows mean store

profits and entry costs expressed in 2010$, as well as marginal effects.

We find that, consistent with anecdotal reporting on dollar store growth, dollar store

31Specifically, we convert the revenue data from TDLinx into profits (deflated to 2010), assuming a 5%
net profit rate, and calibrate the scale parameter θϵ to match the model-predicted profits and the observed
profits for all operating dollar stores in 2019. We use the calibrated scale parameters to convert all estimates
into 2010$. Our approach to scaling model-predicted profits using external revenue data is related in spirit
to Ellickson and Misra (2012), though we do not estimate structural revenue functions; we do adjust for
selection by incorporating the expected value of the choice-specific shock conditional on remaining active
E[ϵit|ait = 1] when constructing model-predicted profits.
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Table 7: Mean store profits and marginal effects

Chain Grocery Convenience

Mean store profits (conditional on remaining active) in 2010$ 73,074 42,719 43,937
Mean entry costs (conditional on entering) in 2010$ 129,169 192,093 244,170

Percentage change in mean store profits from
One additional rival chain store (0-2 mi) -9.69 -30.45 -16.01
One additional rival chain store (2-5 mi) -6.71 -1.28 -4.13
One additional rival grocery store (0-2 mi) -10.30 -7.05 -7.64
One additional rival grocery store (2-5 mi) -10.14 -16.24 -8.18
One additional rival convenience store (0-2 mi) -10.22 -24.78 -13.22
One additional rival convenience store (2-5 mi) 3.69 -2.90 -1.09
One additional own chain store (0-2 mi) -13.15
One additional own chain store (2-5 mi) 10.67
Increase in dist. to distribution center by one s.d. from mean -6.13

Note: Averages are over all incumbent stores (for profits) and entrants (for entry costs) over the period 2010-
2019. Conditional profits and entry costs include the expectation of the structural shock. Percentage changes
are relative to the monopoly case. The mean distance to the closest distribution center is 190mi and the
standard deviation is 130mi.

chains have substantially lower costs of opening a new store than their independent rivals.

They are also substantially more profitable. When we examine the competitive effects of

nearby rivals on profits, several results stand out. First, grocery store profits are significantly

harmed by the presence of nearby dollar stores and convenience stores, with most of the

effects for stores in the 0-2mi radius.32 Second, the presence of dollar stores also significantly

harms convenience store profits, by as much as an additional convenience store. Third, within

dollar store chains, in the 0-2mi radius, there is a strong demand cannibalization effect but in

the 2-5mi range this effect is reversed and chains benefit from scale economies, likely working

through lower operating costs.33 The location of the market relative to a chain’s closest

32The magnitude of the business-stealing effects is consistent with anecdotal evidence from grocery store
owners. For instance, the owner of the Foodliner store in Haven, KS reports,

“We lasted three years and three days after Dollar General opened,” he said. “Sales dropped
and just kept dropping. We averaged 225 customers a day before and immediately dropped to
about 175. A year ago we were down to 125 a day. Basically we lost 35 to 40% of our sales. I
lost a thousand dollars a day in sales in three years.” (The Guardian, “Where even Walmart
won’t go: how Dollar General took over rural America”, 2018)

33This pattern aligns with existing evidence that cannibalization effects decay significantly with distance;
see Pancras et al. (2012).
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distribution center is also an important determinant of profits: a one standard deviation

increase (130mi) from the mean distance (190mi) raises operating costs and reduces store

profits by 6.13%.

We also implement alternative specifications for chains’ dynamic investment costs. In

particular, chains may benefit from network economies at the regional level by operating

multiple stores in neighboring markets, which can reduce distribution and restocking costs

(Jia (2008), Holmes (2011)). To capture these economies of density at the regional level,

we allow the entry cost of the first store in the “region” (defined as a 100mi radius around

the focal market) to differ from the entry cost of subsequent stores. The results are shown

in Table A3 in Appendix B, which compares our baseline specification to the alternative

described above. We find that the entry cost of the first store in the region is approximately

twice as large as the entry costs of subsequent stores (4.68 versus 2.31). These estimates

suggest that entry costs are drastically reduced when stores are opened near existing regional

distribution networks, consistent with the previous literature studying Walmart’s expansion

strategy.34 Finally, Appendix A.3 presents robustness checks with respect to the discount

factor and assumptions about the number of potential entrants.

6 Counterfactual Analysis

This section uses our model estimates for counterfactual simulations. We evaluate the impact

of dollar store expansion using two sets of entry regulation policies: an entry tax and a

dispersal policy. For each market, we simulate the counterfactual where dollar store chains

are subject to entry regulations and compare them to the baseline with free entry. The

equilibrium CCPs under each scenario are used to simulate each market from 2010 to 2019.

The counterfactual exercise quantifies changes in the spatial distribution of retail stores

from regulating dollar store entry, as well as the within-market reallocation of retail activity.

34Density economies may affect profits through both entry and fixed costs. Because the two effects cannot
be separately identified, we capture density economies via entry costs.
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Accounting for within-market spillover effects is crucial to correctly assess the net market

impact of regulation. We also quantify changes in policy-relevant outcomes, such as average

household travel costs to different types of retailers. Due to computational limitations, we

restrict the exercise to markets with up to four commercial locations, covering 458 out of 846

markets in our sample.35 The method used for solving for counterfactual MPE and dealing

with the large dimensional state space is presented in Appendix A.4.

6.1 The Impact on Spatial Market Structure

In the first exercise, we assume that local authorities impose a tax on new dollar stores, which

we implement by increasing dollar store chains’ entry cost by a factor τ ∈ {50%, 100%, 150%, 200%}.

In the second exercise, we assume that local authorities impose dispersal restrictions on dol-

lar store chains: i.e., a dollar store may not enter within 1 mile of an existing dollar store.36

This policy applies to any dollar store regardless of whether the potential entrant and in-

cumbent are owned by the same chain. We set the 1-mile cut-off to mimic typical dispersal

policies used in various cities across the U.S.37

We note two caveats with these counterfactual exercises. First, the identification of coun-

terfactuals in dynamic discrete games is an active area of research (Kalouptsidi et al. (2017),

Kalouptsidi et al. (2021b)). For the entry tax counterfactual, we experiment with multi-

plicative and additive taxes and find broadly consistent results. Second, entry is modeled at

the census tract level and, under the dispersal policy, we measure distances between census

tract centroids rather than between the actual store locations. For instance, if a dollar store

is present in a given census tract, we assume that no other dollar store can enter in census

35This subsample consists of all markets with one to three locations and 20 markets with 4 locations.
36The dispersal policy is dynamic in the sense that dollar stores’ strategy space at time t is a function of

spatial market structure at time t.
37See https://ilsr.org/dollar-store-restrictions/ for a list of cities with such restrictions. The

definition used most commonly for a dollar store is: “retail sales uses with floor area less than 12,000 square
feet that offer for sale a combination and variety of convenience shopping goods and consumer shopping
goods; and continuously offer a majority of the items in their inventory for sale at a price less than $10.00
per item.” In practice, the stores concerned by these restrictions are operated by the three main dollar store
chains.
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tracts within 1-mile of the focal census tract. While measuring distances between census

tract centroids rather than exact store locations introduces approximation, the exercise re-

mains informative about the directional effects of dispersal policies on entry patterns and

market structure.

In what follows, we refer to the factual free entry equilibrium as “Baseline,” the entry

tax counterfactual is referred to by level of the tax τ ∈ {50%, 100%, 150%, 200%}, and the

dispersal policy counterfactual is referred to as “Dispersal.”

We define the following outcome variables that will be used throughout this section.

Recall that the spatial market structure in period t and market m is represented by the

vector nmt, which encodes the number of stores operated by each firm in each location.

Let E[ng
lT |nm0], E[nc

lT |nm0], and E[nd
lT |nm0] denote the expected number of grocery (g),

convenience (c), and dollar (c) stores in location l of market m in the last period T (2019)

under the “Baseline” scenario. Similarly, let E[ñg
lT |nm0], E[ñc

lT |nm0], and E[ñd
lT |nm0] denote

these expectations under one of the counterfactuals. To obtain the factual and counterfactual

expected market structures, we take the expectation over all possible realizations of spatial

market structure given equilibrium factual and counterfactual CCPs.

The effect of a counterfactual entry regulation policy on the number of stores of type

j ∈ {g, c, d} operating in location l is computed as

∆nj
l = E[ñj

lT |nm0]− E[nj
lT |nm0]. (30)

The effect of a counterfactual entry regulation policy on the number of stores of type j ∈

{g, c, d} operating in market m (with L locations) is obtained by summing over locations,

∆nj
m =

L∑
l=1

∆nj
l . (31)

Effectiveness of Counterfactual Policies. We first analyze how effective the various

counterfactual policies are at curbing dollar store entry. For each scenario and each market,

we compute the difference between the (expected) number of dollar stores in the last period
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(2019) and the observed number of dollar stores in the first period (2010). Figure 3 shows

boxplots of the distribution of this difference over markets, for each scenario. Under the

baseline, a typical market adds 1.3 new dollar stores. As expected, higher levels of the entry

tax lead to lower dollar store entry. When the tax reaches 200%, entry is nearly eliminated

in most markets. The high level of entry tax required to block all dollar store entry is

consistent with our estimates showing that dollar store chains earn profits about twice those

of single-store retailers while facing entry costs roughly half as large. The dispersal policy

also dampens entry but appears less effective than a high entry tax in curbing expansion.

Figure 3: Dollar Store Expansion under Free and Regulated Entry
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line inside the box marks the median, and the diamond marker
denotes the mean. Whiskers extend to the largest and smallest
values within 1.5 times the IQR from the box; observations be-
yond this range are omitted from display.

Market-level analysis. We consider the market-level impact of entry regulation policies.

Figure 4 shows boxplots of the change in the number of grocery, convenience, and dollar

stores (∆ng
m, ∆n

c
m, ∆n

d
m) in levels and percentages.

Grocery and convenience store counts rise modestly under all counterfactuals, reflecting

the business-stealing effect of dollar store entry. Under a 200% entry tax, the expected

number of stores per market increases on average by 18% for grocery stores and 7% for
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convenience stores. By contrast, dollar store counts decline sharply: the 200% tax reduces

their average number by 50% relative to baseline.38

The dispersal policy also limits dollar store expansion, though less severely: the policy

appears effective, on average, at increasing grocery store counts, as intended by municipal-

ities adopting such regulation. As can be seen in Figure 4, in a few markets, it leads to a

decline in grocery and convenience stores, as the dispersal rule forces dollar stores into loca-

tions that would otherwise be attractive to single-store retailers, leading to slight declines in

their counts. This underscores that dispersal policies can reconfigure the competitive land-

scape in ways that sometimes hurt single-store retailers by limiting their ability to spatially

differentiate. We explore these location-level spillovers in more detail below.

The 200% entry tax has a larger positive effect on grocery and convenience store counts

(∆ng
m and ∆nc

m) in markets with larger populations and lower incomes—precisely the types

of markets where dollar store entry is most common. By contrast, the impact of the dispersal

policy is weaker in markets with more commercial locations (census tracts), which provide

greater scope for dollar store entry given the imposed dispersal constraints.

Location-level analysis. Next, we direct focus to the impact of the counterfactual policies

across locations (census tract) within market. Figure 5 shows boxplots of the change in the

number of grocery, convenience, and dollar stores per location (∆ng
l , ∆n

c
l , ∆n

d
l ) in levels.39

As in the market-level analysis, the number of dollar stores decreases monotonically with

the level of the entry tax. Grocery and convenience store counts also respond monotonically

with the level of the tax. Importantly, some locations experience a reduction in grocery and

convenience store counts. Under the entry tax counterfactuals, this reflects the endogenous

spatial response of single-store retailers to dollar store expansion: in the baseline, single-

store entrants can avoid direct competition by locating in areas less favored by dollar stores

38The reduction is not 100% because a significant share of markets have dollar stores already operating in
the first period, before entry regulation is imposed.

39We do not plot percentage changes—e.g.,
E[ñj

lT |nm0]−E[nj
lT |nm0]

E[nj
lT |nm0]

—because they can be artificially inflated

when the baseline number of stores in location l E[nj
lT | nm0] is close to zero.
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Figure 4: Change in the Expected Number of Stores per Market under Counterfactuals
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(c) Dollar Stores

Notes: Each panel shows boxplots of the change in the expected number of stores per market (∆ng
m,

∆nc
m, ∆nd

m) under counterfactual policies—in levels (left) and percent changes (right). Boxplot inter-
pretation as in Figure 3.
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(reallocation); when dollar stores are prevented from entering through the entry tax, this

reallocation is undone. Dispersal policies also cause grocery and convenience store counts to

decline in 25% of locations, driven by the forced spatial spread of dollar stores into previously

unserved areas, where they displace (or discourage entry by) single-store retailers.

We examine how the changes in store counts under these policies vary with location

demographic characteristics. We regress ∆ng
l and ∆nc

l on location-level controls: population,

income per capita, a dummy for low racial minority share (below 25%), a dummy for high

vehicle access (above 89%, the first quartile), and include market fixed effects and control for

the number of dollar store in t = 0. We find that denser, lower-income locations experience

a greater increase in the number of single-store retailers: e.g., under the dispersal policy, a

one standard deviation increase in population leads to a 31% increase in ∆ng
l , whereas a one

standard deviation increase in income per capita leads to an 18% decrease in ∆ng
l .

Reallocation. To study the potential for spatial spillovers from the dispersal policy, we

decompose its market-level impact into direct and indirect effects. The direct effect of the

dispersal policy refers to additional entry of grocery and convenience stores generated by

the dispersal constraints imposed on dollar stores. The indirect effects involve the exits of

grocery and convenience stores due to dollar stores expanding into new unserved locations

(within the market) in response to the dispersal constraints.

To operationalize this decomposition, we write the market-level change in the number

of each store type j ∈ {g, c} as the sum of location-level changes between the dispersal and

baseline scenarios, distinguishing between locations that see an increase or decrease in the

number of stores, as follows

∆nj
m =

L∑
l=1

∆nj
l

=
∑

l:∆nj
l>0

∆nj
l︸ ︷︷ ︸

direct effects

+
∑

l:∆nj
l≤0

∆nj
l︸ ︷︷ ︸

indirect effects

(32)

We restrict the analysis below to markets with two to four commercial locations (395 markets
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Figure 5: Change in the Expected Number of Stores per Location under Counterfactuals
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(c) Dollar Stores

Notes: Each panel shows boxplots of the change in the expected number of stores per location (∆ng
l ,

∆nc
l , ∆nd

l ) under counterfactual policies. Boxplot interpretation as in Figure 3.

out of a total of 846 markets in our sample).40

The dispersal policy causes the number of grocery and convenience stores to decrease in

some location(s) within 36% of markets. Conversely, we find that 60% of markets experience

an increase in the number of dollar stores in some location(s) within the market. These

figures are not inconsistent with each other since single-store firms’ profits are a function

of the number of dollar stores within 2 miles of a focal location, which may still decrease

despite there being more dollar stores in the focal location.

To assess the magnitude of these spatial spillovers, we compute the ratios of indirect to

40For spillovers or indirect effects to be present, there needs to be more than one location in the market.
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direct effects (in absolute value) for each market m. For grocery and convenience stores

(j = {g, c}), the diversion ratio is given by∣∣∣∣∣∣∣∣
∑

l:∆nj
l≤0

∆nj
l∑

l:∆nj
l>0

∆nj
l

∣∣∣∣∣∣∣∣ .
For dollar stores (j = {d}), the diversion ratio is given by∣∣∣∣∣∣∣

∑
l:∆nd

l >0

∆nd
l∑

l:∆nd
l ≤0

∆nd
l

∣∣∣∣∣∣∣ .
The average diversion ratio for dollar stores equals 34%, that is, for every one-unit de-

crease in dollar-store presence in constrained locations, we observe a 0.34-unit increase in

unconstrained locations within the market. The diversion ratio is strictly less than one be-

cause the unconstrained locations that can be entered after dispersal policies are put in place

are arguably less attractive to dollar stores. In the case of single-store firms, we find average

diversion ratios of 20% for grocery stores and 27% for convenience stores: i.e., for every

one-unit increase in single-store retailers in locations constrained by the dispersal policy, we

observe a 0.2 to 0.27 decrease in unconstrained locations within the market.

We compare the characteristics of locations by whether they impose or incur negative

spillovers from dispersal policies. We split the sample of locations based on whether ∆nd
l is

negative or positive. Locations that see an increase in dollar stores (∆nd
l > 0) incur negative

spillovers from the counterfactual policy. Table 8 reports average population, income per

capita, and the share of locations with high vehicle access (above 89%) and low minority share

(below 25%). We find that, in response to the dispersal policy, dollar store entry is reallocated

from denser, lower-income areas to less populated, higher-income locations. These receiving

areas also exhibit higher rates of vehicle access, consistent with higher socioeconomic status.

This implies that dispersal policies reconfigure the spatial allocation of retail activity

in a given market. The aggregate impact of dispersal policies on single-store firms at the

market level is, therefore, attenuated once these negative spillovers are accounted for. In
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Table 8: Characteristics of Locations with Direct and Indirect Effects

∆nd
l ≤ 0 ∆nd

l > 0

Variable Mean SE Mean SE t-stat

Population 3, 502 1, 521 2, 508 1, 789 8.56
Income per Capita 20, 639 6, 898 22, 167 5, 900 -3.61
High Access to Vehicle 0.70 0.46 0.85 0.36 -5.51
Low Minority Share 0.77 0.42 0.79 0.41 -0.72

the next subsection, we show how predicted changes in market structure can be used to

compute consumer-level outcomes such as retail proximity and distance to the nearest store

for different store types.

6.2 The Impact on Retail Proximity and Travel Costs

We consider how changes in market structure translate into changes in retail proximity. All

measures of retail proximity are constructed from data on population at the census block

group, i.e., one level down from our definition of locations (census tract). Mean and median

statistics are obtained by taking the (population-weighted) mean and median over all census

block groups in a market.41 Table 9 shows the average distance between consumers and

the nearest store, for the different retail formats, under the baseline, the entry tax (with

τ = 200%), and the dispersal policy.

In panel A, we condition on the subset of markets in which there is at least one store

format operating in each scenario. The column Pr(n > 0) gives the population-weighted

probability that a market has at least one store of that format operating. The results

indicate that grocery stores are present in more markets under the entry tax (82%) than in

the baseline scenario (76%), suggesting that dollar store entry is associated with a decline

in the prevalence of grocery stores.42

41To compute distance to the nearest store, we assume that stores are located at the population-weighted
centroid of their census tract. This assumption is required to keep the structural model tractable. We can,
however, compare distances to the nearest store if the actual location (latitude and longitude) of each store
in the factual scenario is used. Using population-weighted centroids instead of the actual store location does
not quantitatively affect the results for the factual scenario.

42While we document changes in retail proximity, entry may have mixed effects on consumers: e.g.,
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In panels B and C, we use all markets, including those where no store is present in one of

the scenarios. Because proximity is inherently not well-defined in these cases, we compute

the lower (and upper) bound on the distance to the nearest store by assuming a distance of

5 (and 7) miles if there are no stores of a particular format operating in the market. We find

that the distance to the nearest grocery store decreases by about 14% under the entry tax:

from 2.24 to 2.01 miles (lower bound), or 2.74 to 2.39 miles (upper bound). Given that prior

research suggests consumers typically travel no more than 1 to 2 miles for grocery trips, this

change represents a notable difference in the average distance to the nearest grocery store

across scenarios. Average distance to the nearest dollar store rises–—from 1.22 to 1.87 miles

in Panel B, and from 1.26 to 2.22 miles in Panel C.

The dispersal policy, which limits dollar store clustering, reduces the average distance to

dollar stores (to 1.10 miles) while preserving near-universal coverage (Pr(n > 0) = 0.99).

Unlike the entry tax, it redistributes dollar stores across locations without significantly af-

fecting the extensive margin of entry. However, the distance to single-store retailers falls less

than under the entry tax. By pushing dollar stores into less desirable areas, the dispersal

policy may increase competition with single-store retailers, limiting their ability to spatially

differentiate and potentially crowding them out in marginal locations.

7 Conclusion

This article aims to inform the policy debate around dollar stores by quantifying their im-

pact on retail markets, specifically the number of retail stores by format and their geographic

layout. We specify a dynamic model of spatial competition between different store types.

The model explicitly incorporates equilibrium effects to assess the net impact of dollar store

expansion. The spatial nature of competition introduces non-trivial complexities when es-

timating and solving this game. Methodologically, we deal with the high-dimensionality

entry may also lead to lower prices or competitive responses by incumbents. Assessing the overall welfare
implications via a pricing model is beyond the scope of this paper.
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Table 9: Predicted retail proximity: distance to nearest store

Baseline Entry Tax (200%) Dispersal

Mean Median Pr(n > 0) Mean Median Pr(n > 0) Mean Median Pr(n > 0)

Panel A. Conditional on n > 0
Distance to nearest (in miles)
Grocery store 1.37 0.97 0.76 1.36 0.95 0.82 1.37 0.97 0.79
Convenience store 1.23 0.85 0.94 1.21 0.84 0.95 1.22 0.85 0.94
Dollar store 1.19 0.82 0.99 1.31 0.92 0.83 1.10 0.76 0.99
Any format 1.10 0.74 1.10 0.74 1.05 0.70

Panel B. Lower bound
Distance to nearest (in miles)
Grocery store 2.24 2.22 2.01 1.90 2.12 2.03
Convenience store 1.44 1.15 1.37 1.07 1.40 1.10
Dollar store 1.22 0.86 1.87 1.10 1.11 0.78
Any format 1.11 0.78 1.14 0.79 1.05 0.73

Panel C. Upper bound
Distance to nearest (in miles)
Grocery store 2.74 2.71 2.39 2.28 2.56 2.44
Convenience store 1.58 1.21 1.48 1.13 1.53 1.16
Dollar store 1.26 0.88 2.22 1.10 1.13 0.78
Any format 1.14 0.79 1.17 0.80 1.07 0.74

Note: Measures of retail proximity are constructed by taking the (population-weighted) mean and median over all census block groups.
Pr(n > 0) gives the (population-weighted) mean probability that at least one store is operating in the market. The bottom two panels
assume that if there are no stores (of a given retail format) operating in the market, the distance travelled is 5mi (lower bound) or 7mi
(upper bound).

of the firms’ problem by extending the ECCP estimator of Kalouptsidi et al. (2020) from

single-agent problems to games with finite dependence.

Our estimates indicate that dollar store chains benefit from lower entry costs and from

operating at higher store density. Their increasingly wide network of distribution centers

allows them to reduce store-level fixed costs over time and support their expanding retail

footprint. Grocery and convenience stores, on the other hand, are harmed by the presence

of dollar stores at close proximity.

We use the estimated model to show that entry taxes are more effective at halting expan-

sion than dispersal policies. These policies increase the number of grocery and convenience

stores, especially in lower-income and densely populated markets. However, effects vary

across locations: the dispersal policy pushes dollar stores into previously unserved areas,

which can crowd out independent retailers and reduce their ability to spatially differentiate.

A significant share of the gains in grocery and convenience store counts are offset by losses

elsewhere in the market. These findings highlight the importance of accounting for spatial
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spillovers when regulating entry in retail markets.

The full welfare implications of dollar store expansion are arguably multifaceted. Dollar

store entry may affect consumer welfare through price changes, store convenience, prod-

uct availability, and ultimately, by altering the composition of consumers’ shopping baskets

(Caoui et al. (2024)). In the medium to long run, these changes can significantly impact con-

sumers’ dietary choices and health outcomes. Although limitations in data and complexity

prevent an estimation approach that accounts for all these dimensions in a single model, this

article aims to improve our understanding of dollar stores’ impact and informs the policy

debate around this retail format.
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Online Appendix for “Dynamic Entry & Spatial Com-

petition: An Application to Dollar Store Expansion”

A Estimation Details

A.1 Estimation Approach for Single-Store Firms and Multi-Store
Incumbents

We derive estimating equations for single-store firms and chain incumbents. The use of
finite-dependence and rational expectations follows the same motivation as the case of chain
entrants presented in Section 4.2.1.

Single-store firms. A potential entrant can either stay out (ait = 0) or enter by building
a store in any of the locations (ait = l+). The corresponding choice-specific value functions
are given by

vPi,t(ait = 0,Mj,i,t) = 0 (33)

vPi,t(ait = l+,Mj,i,t) = −θEC
i + β E[vpi,l(Mj,i,t+1)− FCi + γ − ln(Pi,t+1(l−|Mj,i,t+1)] (34)

where the expectation is over Mj,i,t+1 conditional on (ait = l+,Mj,i,t) and we use t+1 CCP
(of exiting) to express the entrant’s continuation value in period t+1. Combining these two
equations gives

vPi,t(l+,Mj,i,t)− vPi,t(0,Mj,i,t) = −θEC
i + β E[vpi,l(Mj,i,t+1)− FCi + γ − ln(Pi,t+1(l−|Mj,i,t+1)]

(35)

Differences in choice-specific value functions can alternatively be expressed using current
period CCPs as

vPi,t(l+,Mj,i,t)− vPi,t(0,Mj,i,t) = ln

(
Pi,t(l+|Mj,i,t)

Pi,t(0|Mj,i,t)

)
(36)

Combining Equation (35) and Equation (36), we obtain an optimality condition that
involves only CCPs at t and t+ 1 and the single-period payoff function

ln

(
Pi,t(l+|Mj,i,t)

Pi,t(0|Mj,i,t)

)
= −θEC

i + β E[vpi,l(Mj,i,t+1)− FCi + γ − ln(Pi,t+1(l−|Mj,i,t+1)] (37)

This equation can be used to construct moment conditions that do not require explicit
integration over the space of state variables. Under rational expectations, the conditional
expectation at period t of CCPs and profits at t+1 is equal to these realized variables minus
an expectational error that is orthogonal to the state variables at period t. Therefore, for
any function of period-t information set h(Mj,i,t), we have

E [h(Mj,i,t)uit] = 0 (38)

where uit is the expectational error defined, for any realization M∗
j,i,t+1 of the random

1



variable Mj,i,t+1, as

uit = β E[vpi,l(Mj,i,t+1)− FCi + γ − ln(Pi,t+1(l−|Mj,i,t+1)]

− β
(
vpi,l(M∗

j,i,t+1)− FCi + γ − ln(Pi,t+1(l−|M∗
j,i,t+1)

)
= ln

(
Pi,t(l+|Mj,i,t)

Pi,t(0|Mj,i,t)

)
+ θEC

i

− β
(
vpi,l(M∗

j,i,t+1)− FCi + γ − ln(Pi,t+1(l−|M∗
j,i,t+1)

)
(39)

where the second equation is obtained by using Equation (37) to eliminate the expectation
term.

Kalouptsidi et al. (2020) show that, under linearity of payoffs, these moment conditions
(replaced by their sample counterparts) can form the basis of a linear regression model.
Define the left-hand side variable by collecting all known terms that depend on the CCPs

Y entrant
it = ln

(
Pi,t(l+|Mj,i,t)

Pi,t(0|Mj,i,t)

)
− β(γ − ln(Pi,t+1(l−|Mj,i,t+1))

We can obtain the structural parameters for single-store firms by rewriting Equation (39) as

Y entrant
it = −θEC

i + β [vpi,l(Mj,i,t+1)− FCi] + uit

where regressors entering the variable profit function vpi,l(Mj,i,t+1) in t + 1 (population,
income, etc.) are instrumented using the values of these regressors in period t.43

For single-store incumbents, one can construct a similar regression model by taking the
difference between the choice-specific value functions of staying active (ait = 0) or exiting
(ait = l−)

vPi,t(0,Mj,i,t)− vPi,t(l−,Mj,i,t) = β E[vpi,l(Mj,i,t+1)− FCi + γ − ln(Pi,t+1(l−|Mj,i,t+1)] (40)

which yields the regression equation

Y incumbent
it = β[vpi,l(Mj,i,t+1)− FCi] + uit

where the left-hand side variable is defined as

Y incumbent
it = ln

(
Pi,t(0|Mj,i,t)

Pi,t(l−|Mj,i,t)

)
− β(γ − ln(Pi,t+1(l−|Mj,i,t+1)).

Multi-store incumbents. The derivation of estimating equations for chain incumbents
follows similar steps as in the case presented in the main text for chain entrants (Section
4.2.1). For an incumbent chain with one store in location l∗, possible actions are to do
nothing, build a second store, or close its existing store (note we allow the entry cost for

the second store θ̃EC
i to be different than for that of the first store θEC

i ). The corresponding

43The endogeneity problem occurs because t+1 covariates may correlate with expectational error uit. One
can use instruments in the contemporaneous information set at t for these next-period covariates.
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choice-specific value functions are given by

vPi,t(l
∗
−,Mj,i,t) = vpi,l∗(Mj,i,t+1)− FCi (41)

vPi,t(0,Mj,i,t) = vpi,l∗(Mj,i,t+1)− FCi

+ β E[vpi,l∗(Mj,i,t+1)− FCi + γ − lnPi,t+1(l
∗
−|Mj,i,t+1)|Mj,i,t, 0]

(42)

vPi,t(l+,Mj,i,t) = vpi,l∗(Mj,i,t+1)− FCi − θ̃EC
i

+ β E[vpi,l(Mj,i,t+1) + vpi,l∗(Mj,i,t+1)− FCi

+ γ − lnPi,t+1(l−|Mj,i,t+1)|Mj,i,t, l+]

+ β2 E[vpi,l∗(Mj,i,t+2)− FCi + γ − lnPi,t+2(l
∗
−|Mj,i,t+1)|Mj,i,t, l+]

(43)

We can derive two sets of optimality conditions (e.g., do nothing vs. build a second store,
and do nothing vs. close an existing store), by taking differences in the choice-specific value
functions and using their CCP representation

vPi,t(l+,Mj,i,t)− vPi,t(0,Mj,i,t) = log

(
Pi,t(l+|Mj,i,t)

Pi,t(0|Mj,i,t)

)
(44)

vPi,t(0,Mj,i,t)− vPi,t(l
∗
−,Mj,i,t) = log

(
Pi,t(0|Mj,i,t)

Pi,t(l∗−|Mj,i,t)

)
(45)

As with chain entrants, we can dispose of the expectations in Equations (41) to (43) using
the rational expectation assumption and derive moment conditions. As before, period t+ 2
states, appearing in Equation (43), are conditional on the action ait = l+. However, the
empirical distribution of Mj,i,t+2 (in particular the vector n−i,t+2) is conditional on the ait
played in the data, which may or may not be l+. To correct for this selection problem in
forming the IV regression equations, any term involving Mj,i,t+2 is scaled by the importance
weights ψl+,ã(n−i,t+2|Mj,i,t) (Lemma 1), where ã is the action played in the data.

A.2 Alternative Estimation Approach

The baseline estimation approach extends the ECCP estimator of Kalouptsidi et al. (2020)
from single-agent problems to dynamic games with finite dependence. The estimator lever-
ages the finite-dependence property to express ex-ante value functions as a function of (ob-
served) CCPs, drastically reducing computational costs. A potential caveat of this estimator
is that it places a sizeable burden on particular reference probabilities (e.g., the probability
of exit). If these probabilities are not precisely estimated, this can introduce bias in the
estimates of dynamic investment costs (e.g., entry costs). To alleviate these concerns, we
compare our baseline estimation results to ones obtained using an alternative approach that
does not rely on finite dependence but instead solves directly for the ex-ante value function.

As the state space is exceptionally large and some state variables are continuous, it is
impossible to solve for value functions at all states. Therefore, we approximate the ex-ante
value function by a linear parametric function of K variables at a pre-specified number of
states N (including all states observed in the data). Value function approximation has been
implemented in other studies such as Sweeting (2013), Aguirregabiria and Vicentini (2016),
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Jia Barwick and Pathak (2015), and Beresteanu et al. (2019). Following the notation in
Sweeting (2013), we express the ex-ante value function as

V
P

i,t(Mj,i,t) ≈
K∑
k=1

λkϕki(Mj,i,t) (46)

In practice, approximating functions ϕki(Mj,i,t) include all exogenous variables and num-
ber of rival and own stores by distance bands and locations.44 We allow the coefficients λk
to differ by firm type (e.g., convenience, grocery, dollar store) and by incumbency status.45

Given a vector of CCPs and structural parameters in iteration (k), denoted (P(k),θ(k)),
we iterate over the following steps.

1. Solve for the ex-ante value function for each player i, denoted Vi. This is a vector
stacking value functions at the N pre-specified states. Under our approximation, the
value function can be expressed as Vi = λ′ϕi, in matrix form. In equilibrium, the
ex-ante value function must satisfy the following identity,

Vi = λ′ϕi =
∑
a

P
(k)
i (a)

[
π

(k)
i (a) + E[ϵ|a]

]
+ βλ′ E [ϕi] (47)

where π
(k)
i (a) is the vector of current-period profits given structural parameters θ(k),

E[ϵ|a] is the expected firm-specific shock given action a is chosen, and E [ϕi] is the ex-
pected future value of the approximating functions with component E [ϕki(Mj,i,t+1)|Mj,i,t+1].
Rewriting this identity as

λ′ (ϕi − β E [ϕi]) =
∑
a

P
(k)
i (a)

[
π

(k)
i (a) + E[ϵ|a]

]
(48)

λ can be found by an OLS regression. To calculate E [ϕi], we fit an AR-1 process
for each exogenous state variables (location-level population, income, and rents, in
logarithm), allowing for innovation shocks that are correlated across locations in a

44For incumbents, we sum these approximating functions over all stores the firm is currently operating.
For a single-store entrant, the continuation value of staying out is zero (terminal action); whereas the
continuation value of entering is equal to the ex-ante value function of being an incumbent in period t + 1
(net of entry costs). By contrast, for a chain entrant, staying out is not a terminal action, therefore we
also approximate the ex-ante value function of being an entrant, as the sum of exogenous and endogenous
variables by distance bands over all locations in the market. We experimented with a saturated model
including interactions, and/or market fixed effects, without significant improvements in fit. This is likely
due to the fact that the static payoff function is linear.

45Because there is a time-to-build (and to exit) of one period, current-period profits for incumbents only
depend on the stores operated at the beginning of the period but not on the chosen action (remain active,
exit, build an additional store) and cancel out when taking differences in choice-specific value function. To
be able to estimate profits, the ex-ante value function is, in practice, approximated as

V
P

i,t(Mj,i,t) ≈ V Pi(Mj,i,t) +

K∑
k=1

λkϕki(Mj,i,t)

To keep the exposition concise, we ignore this first term in the derivation that follows.
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market. For the endogenous states (store counts), we simulate 1, 000 realizations of
next-period spatial market structure by drawing from the current vector of CCPs P(k).

2. Given estimates of the ex-ante value function, update the vector of choice-specific value
functions for each player i, denoted v

(k)
i (a|θ), as a function of a candidate vector of

structural parameter θ

v
(k)
i (a|θ) = πi(a|θ) + βλ̂′ E [ϕi|a] (49)

where πi(a|θ) are current-period profits parameterized as a function of candidate pa-
rameter θ, and E [ϕi|a] is the expected future value of the approximating functions
given action a is played, that is, E [ϕki(Mj,i,t+1)|a,Mj,i,t+1], which is calculated in a
similar fashion as in the previous step (except for the additional conditioning on action
a).

3. After pooling the data across all markets and periods, optimize the objective func-
tion with respect to the structural parameters. We implement a minimum-distance
estimator (Pesendorfer and Schmidt-Dengler (2008), Bugni and Bunting (2021)). The
distance between the initial CCPs and predicted CCPs (or alternatively between dif-
ferences in choice-specific value functions) is minimized, that is,

min
θ

|| log

(
P

(0)
i (a)

P
(0)
i (a′)

)
− (v

(k)
i (a|θ)− v

(k)
i (a′|θ)||2

Denote θ(k+1) the updated structural parameters.46

4. Update the CCPs, using the new structural parameters, that is,

P
(k+1)
i (a) =

exp
(
v
(k)
i (a|θ(k+1))

)
∑̃
a

exp
(
v
(k)
i (ã|θ(k+1))

) . (50)

The k−Minimum Distance (k−MD) estimator iterates on these steps k times. Bugni
and Bunting (2021) show that the k−MD estimator is consistent and asymptotically normal
for any k ≥ 1, and for an initial choice of CCPs that is asymptotically equivalent to the
frequency estimator (e.g., flexible logit) and a specific optimal weight matrix, the 1−MD
estimator is optimal.

Table A1 shows estimates of the structural parameters based on our baseline estimator
(ECCP with finite dependence) and the 1−MD estimator presented above, using the sample
of 846 markets. The two approaches yield very close estimates of entry costs, and profit
parameters that are broadly of similar sign and magnitudes. For chains, we note that the

46We do not attempt to calculate and use the optimal weight matrix derived in Bugni and Bunting (2021),
given the size of the state space, as it would likely introduce finite-sample bias. We also experimented
using the pseudo-likelihood as our objective function, as in Aguirregabiria and Mira (2007), and obtain
qualitatively similar results.
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magnitude of the (variable) profit coefficients are larger, but marginal effects are of similar
magnitude. For example, adding one chain store within 2 miles of an exiting own store
reduces mean profits by 11% under ECCP and by 14% under 1-MD. If a store is added in
the 2-5mi band, mean store profits increase by 9% under ECCP and 14% under 1-MD.47

Profits estimates based on the two sets of parameters are qualitatively similar. To illus-
trate this point, Figure A1 shows histograms of incumbents’ profits (unscaled) based on the
baseline and alternative estimation approaches. The magnitude and distribution of profits
for single-store firms are comparable across the two specifications. Overall, these results
indicate that our baseline estimates of entry costs and profits are robust to the estimation
approach providing supporting evidence for our counterfactual exercise.

Table A1: Estimates of store profits and costs (Baseline ECCP and 1-MD estimators)

ECCP with finite dependence 1-MD with value function approximation

Chain Grocery Conv. Chain Grocery Conv.
Parameters Est. s.e. Est. s.e. Est. s.e. Est. s.e. Est. s.e. Est. s.e.

Constant 2.201 (0.536) -0.805 (0.409) -0.354 (0.273) 12.532 (2.618) 0.613 (0.998) 2.239 (1.054)
Location-level characteristics
Population (0-2 mi) 0.043 (0.012) 0.161 (0.025) 0.073 (0.010) 0.130 (0.189) 0.110 (0.022) 0.058 (0.007)
Population (2-5 mi) 0.010 (0.004) 0.011 (0.006) 0.005 (0.003) 0.028 (0.034) 0.023 (0.009) 0.017 (0.005)
Income per capita (0-2 mi) -0.144 (0.048) -0.040 (0.052) -0.014 (0.019) -1.196 (0.202) -0.186 (0.075) -0.250 (0.076)
Income per capita (2-5 mi) -0.004 (0.003) -0.002 (0.003) -0.002 (0.002) -0.023 (0.025) -0.009 (0.005) -0.010 (0.003)

Fixed cost components
Median residential rent -0.067 (0.044) 0.015 (0.048) 0.002 (0.025) -0.173 (0.209) -0.016 (0.038) -0.044 (0.031)
Distance to own distribution center -0.062 (0.026) -0.366 (0.178)

Measures of competition and cannibalization
Number of rival chain stores (0-2 mi) -0.068 (0.015) -0.144 (0.018) -0.080 (0.009) -0.257 (0.086) -0.054 (0.033) -0.051 (0.013)
Number of rival chain stores (2-5 mi) -0.040 (0.021) -0.013 (0.024) -0.028 (0.010) -0.168 (0.094) -0.056 (0.024) -0.043 (0.018)
Number of rival grocery stores (0-2 mi) -0.073 (0.025) -0.035 (0.019) -0.032 (0.010) -0.221 (0.054) -0.013 (0.018) -0.049 (0.013)
Number of rival grocery stores (2-5 mi) -0.080 (0.029) -0.060 (0.026) -0.035 (0.013) -0.233 (0.092) -0.053 (0.030) -0.057 (0.017)
Number of rival convenience stores (0-2 mi) -0.075 (0.022) -0.123 (0.016) -0.063 (0.010) -0.135 (0.050) -0.143 (0.022) -0.094 (0.013)
Number of rival convenience stores (2-5 mi) 0.024 (0.023) -0.037 (0.019) -0.009 (0.010) -0.054 (0.070) -0.052 (0.024) -0.014 (0.017)
Number of own chain stores (0-2 mi) -0.091 (0.037) -0.112 (0.066)
Number of own chain stores (2-5 mi) 0.082 (0.022) 0.322 (0.078)

Market-level characteristics
Population -0.078 (0.023) -0.093 (0.022) -0.059 (0.012) 0.124 (0.464) -0.005 (0.039) -0.029 (0.031)
Number of gas stations 0.011 (0.018) -0.025 (0.020) -0.057 (0.010) 0.045 (0.066) -0.042 (0.030) -0.103 (0.018)
Number of drug stores 0.063 (0.021) 0.019 (0.025) 0.004 (0.017) 0.202 (0.067) 0.070 (0.031) 0.025 (0.035)
Number of supermarkets/centers 0.097 (0.023) -0.008 (0.017) 0.036 (0.019) 0.375 (0.080) 0.003 (0.029) 0.093 (0.039)

Dynamic investment costs
Entry cost 2.111 (0.123) 5.478 (0.066) 5.862 (0.043) 2.612 (0.184) 5.496 (0.067) 5.864 (0.044)
Entry cost of additional store 9.734 (0.165) 10.027 (0.080)

Note: Standard errors are obtained via bootstrap of market-histories for both estimation approaches (20 replications). All continuous variables and store counts are in log.
Business density is controlled for. Residential rent is at the location level.

A.3 Robustness Checks

This section investigates how the various assumptions required by the model impact the
quantified effects.

47In experimenting with the two estimators, we noted that the value function approximation performed
better for single-store firms than chains. This is likely due to the fact that the ex-ante value function is
simpler for single-store incumbents (since they either stay active or exit); whereas chains have many more
choices (remain active, close any of the existing stores, build an additional store in any of the locations, etc.),
making it highly non-linear.
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Figure A1: These figures show estimated profits for grocery stores (left) and convenience
stores (right) under our baseline estimator (ECCP with finite-dependence) and the alterna-
tive estimator (minimum-distance with value function approximation).

Discount factor. The main estimates use an annual discount factor β equal to 0.9025
(corresponding to 0.95 per 6 months). We examine how the estimation and counterfactual
predictions change with different discount factors ranging from 0.85 to 0.95. All else equal,
a lower discount factor will be offset with higher estimates of per-period profits, holding
entry costs fixed. As expected, we find that estimated mean store profits (conditional on
remaining active) are 32% higher with a 0.85 annual discount rate compared to the baseline
(0.9025), and 25% lower with a 0.95 annual discount rate. Under these alternative values
for the discount factor, the counterfactual results remain broadly similar to our baseline
predictions.

Number of potential entrants. The set of potential entrants is an important modelling
choice in entry games. In our setting, there are two types of entrants: the three dollar
store chains are “global” entrants, i.e., they are potential entrant in every market, and their
identity is known. Grocery and convenience stores are “local” entrants: each firm considers
entry only in a single market. Moreover, we observe entry decisions only by local entrants
which end up entering but not by those firms staying out. In the baseline specification, we
set the number of “local” potential entrants (by retail format) to the total number of unique
stores which have operated at any point in a given market over the period 2008-2019. This
is arguably a lower bound on the set of local potential entrants.

We consider how increasing the set of potential entrants affects our structural estimates.
The baseline number of local potential entrants (grocery and convenience stores) is increased
from the baseline to twice as many as in the baseline. One would expect that, with more
local entrants, the model rationalizes observed entry rates (i.e., the number of incumbents)
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with higher entry costs. This is indeed the case: we find that doubling the number of local
potential entrants yields entry costs that are 19% higher for grocery stores and 20% higher
for convenience stores relative to the baseline specification. Store profits remain stable across
specifications of the number of potential entrants.

A.4 Solution Method for the Dynamic Game

This section provides an overview of the solution method used to find counterfactual equilib-
ria of the dynamic game. The dynamic game is solved via policy iteration (Judd (1998), Rust
(2000)). This approach consists in iterating repeatedly between two steps: a given iteration
starts by updating the ex-ante and choice-specific value functions given the current vector
of CCPs (policy evaluation), then these value functions are used to update the vector CCPs
(policy improvement). The algorithm iterates until value functions and CCPs converge, up
to a pre-defined tolerance level.

As the state space is extremely large (with continuous state variables), it is computation-
ally prohibitive to solve for value functions and CCPs at all states. We adopt two simplifying
assumptions to maintain tractability.

First, we fix the demographic state variables (income, population, etc.) to their value
realized in the data and assume their transitions are deterministic. For periods outside of
our sample, i.e, t ≥ T + 1 (where period T + 1 corresponds to the year 2020), we assume
that these demographic variables become stationary and equal the expected value given their
realizations in period T .48 We also assume that chains’ distribution networks remain fixed
at their period-T configurations for t ≥ T + 1.

Second, with many single-store retailers and three chain players, the number of industry
states in multi-location markets is typically too large to store in memory. To address this
issue, we restrict the strategy space for dollar store chains by assuming that each chain
may open at most one store over the game horizon T—in addition to any stores they were
operating in the first period—and that chains do not close stores. This simplification is
broadly in line with the empirical frequency of entry and exit observed in the data (see
Table 4) and reflects the nature of the counterfactuals we study, which primarily constrain
dollar store expansion.

The dynamic game is solved by backward induction starting from the first period outside
our sample, i.e., t = T + 1. For each market and each period t, we iterate over the following
steps:

1. Initialize the vectors of CCPs for each firm and state Pi,t. If firm i is a potential
entrant, Pi,t is a vector indexed by the state and locations (Mi,j,t, l+) giving the CCP
of entry into location l in state Mi,j,t. If i is an incumbent, Pi,t is a vector indexed
by (Mi,j,t, ait) giving the CCP of choosing action ait (remaining active/exiting for
single-store firms, or building an additional store/doing nothing for chains) in state
Mi,j,t.

48To compute this expectation, we assume that demographic variables in each location evolve according
to AR-1 processes, allowing for geographically correlated innovation shocks within each market.
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2. Form the transition matrix from state Mi,j,t to state Mi,k,t+1 for each firm type,
conditional on the action played a. Denote this transition matrix Fi,t(a). If firm i
plays a terminal action (e.g, an incumbent single-store firm exits) the continuation
value is zero, therefore, knowledge of this transition matrix is not necessary.

3. Solve for dollar store chains’ ex-ante value function. For period t ≤ T , the ex-ante
value function is obtained recursively, given period-t+ 1 ex-ante value function, as

Vi,t =
∑
a

Pi,t(a) [πi,t(a) + E[ϵit|a] + βFi,t(a)Vi,t+1] . (51)

where πi,t(a) are single-period profits under action a, and E[ϵit|a] is the expectation of
the firm-specific shock conditional on action a being played. For period t ≥ T +1, the
ex-ante value function solves the system of equations

Vi,T+1 =

(
I − β

∑
a

Pi,T+1(a)Fi,T+1(a)

)−1∑
a

Pi,T+1(a) (πi,T+1(a) + E[ϵiT+1|a]) ,

(52)
where I is the identity matrix.

4. Update the conditional choice-specific value function. Let vi,t(a) denote a vector col-
lecting the choice-specific value function of firm i if it plays action a for all states
(Mi,j,t). For single-store retailers, we leverage their terminal action. The choice-
specific value function satisfies the equality (in matrix form)

vi,t(a) = πi,t(a) + βFi,t(a)[vi,t+1(exit) + γ − ln(Pi,t+1(exit))] (53)

vi,exit is only a function of the single-period profits.

For dollar store chains, given period-t+1 ex-ante value function, we update the choice-
specific value function in period t as follows

vi,t(a) = πi,t(a) + βFi,t(a)Vi,t+1. (54)

5. Update the vectors of CCPs as

P
′

i,t(a) =
exp (vi,t(a))∑̃
a

exp (vi,t(ã))
. (55)

If the maximum absolute difference between Pt and P
′
t is less than the pre-defined

tolerance level, the procedure stops: the equilibrium CCPs P
′
t and dollar store chains’

ex-ante value function Vi,t are saved, and we proceed backwards to period t−1. If not,
define updated CCPs as a convex combination of old and new CCPs αPi,t+(1−α)P′

i,t

for each player i and return to Step 2.

As markets are independent, we solve the model for each market separately.
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B Supplementary Tables and Figures

Figure A2: Store counts by firm type
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Notes: This figure shows store counts for the different store types in the SNAP Retailer
panel data. Gas stations and drug stores are excluded.
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Figure A3: Distribution center locations in 2019
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Table A2: Multinomial logit of single-store firms’ choice

Dependent variable: Firm enters or remains active in location l

Grocery Grocery Convenience Convenience
(1) (2) (3) (4)

Entrant −0.613 (1.016) −6.208 (1.116) −0.407 (0.801) −4.786 (0.719)
Incumbent 5.062 (1.014) −0.673 (1.121) 5.538 (0.807) 1.101 (0.722)

Location-level characteristics
Population (0-2 mi) 0.316 (0.038) 0.334 (0.057) 0.208 (0.025) 0.222 (0.026)
Population (2-5 mi) −0.010 (0.017) −0.017 (0.016) −0.016 (0.013) −0.013 (0.013)
Income per capita (0-2 mi) −0.159 (0.090) 0.045 (0.105) −0.019 (0.068) 0.145 (0.060)
Income per capita (2-5 mi) 0.011 (0.013) 0.016 (0.011) 0.010 (0.009) 0.006 (0.009)

Cost shifters
Distance to DG distribution center 0.061 (0.027) 0.052 (0.033) 0.026 (0.029) 0.004 (0.026)
Distance to DT distribution center 0.040 (0.038) 0.053 (0.044) −0.024 (0.030) −0.015 (0.026)
Distance to FD distribution center 0.067 (0.034) 0.047 (0.045) 0.028 (0.033) 0.029 (0.031)
Median residential rent −0.108 (0.102) 0.089 (0.108) −0.123 (0.069) −0.025 (0.065)

Measures of competition
Number of rival chain stores (0-2 mi) −0.125 (0.046) −0.284 (0.053) −0.107 (0.037) −0.242 (0.036)
Number of rival chain stores (2-5 mi) −0.040 (0.046) −0.015 (0.053) −0.110 (0.036) −0.072 (0.036)
Number of rival grocery (0-2 mi) 0.065 (0.033) −0.060 (0.041) 0.016 (0.029) −0.096 (0.027)
Number of rival grocery (2-5 mi) −0.082 (0.038) −0.139 (0.044) −0.040 (0.034) −0.083 (0.030)
Number of rival convenience (0-2 mi) −0.083 (0.032) −0.235 (0.037) −0.054 (0.024) −0.170 (0.024)
Number of rival convenience (2-5 mi) −0.033 (0.036) −0.041 (0.042) 0.010 (0.026) −0.018 (0.025)

Market-level characteristics
Population −0.452 (0.064) −0.249 (0.075) −0.416 (0.052) −0.244 (0.049)
Number of gas stations −0.099 (0.037) −0.016 (0.041) −0.168 (0.032) −0.148 (0.030)
Number of drug stores 0.095 (0.052) 0.031 (0.059) 0.018 (0.048) −0.023 (0.043)
Number of supermarkets −0.0002 (0.056) −0.103 (0.058) 0.153 (0.053) 0.087 (0.049)

Business Density No Yes No Yes
Year FE No Yes No Yes

Observations 28,144 28,144 82,180 82,180
Log Likelihood −13,074.510 −12,730.870 −38,249.850 −37,639.490

Note: Standard errors are clustered by market. The baseline alternative is “firm is inactive” (either by exiting or
staying out). Dollar figures are in 2010$. Business density is defined as the maximum number of establishments
simultaneously operating in location l over the period 2008-2019. Distance to distribution center is at the market level,
residential rent is at the location level. All continuous variables and store counts are in log.
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Table A3: Estimates of stores profits and costs: alternative specifications

Chains
(1) (2)

Parameters Estimate s.e. Estimate s.e.

Constant 2.616 (0.444) 2.318 (0.449)
Location-level characteristics
Population (0-2 mi) 0.049 (0.015) 0.050 (0.015)
Population (2-5 mi) 0.010 (0.005) 0.012 (0.006)
Income per capita (0-2 mi) -0.175 (0.049) -0.176 (0.050)
Income per capita (2-5 mi) -0.004 (0.003) -0.005 (0.003)

Fixed cost components
Median residential rent -0.072 (0.056) -0.051 (0.057)
Distance to own distribution center -0.058 (0.020) -0.021 (0.021)

Measures of competition and cannibalization
Number of rival chain stores (0-2 mi) -0.070 (0.023) -0.087 (0.023)
Number of rival chain stores (2-5 mi) -0.048 (0.022) -0.059 (0.022)
Number of rival grocery stores (0-2 mi) -0.074 (0.022) -0.074 (0.022)
Number of rival grocery stores (2-5 mi) -0.073 (0.025) -0.072 (0.025)
Number of rival convenience stores (0-2 mi) -0.073 (0.022) -0.061 (0.023)
Number of rival convenience stores (2-5 mi) 0.026 (0.022) 0.030 (0.022)
Number of own chain stores (0-2 mi) -0.094 (0.045) -0.091 (0.045)
Number of own chain stores (2-5 mi) 0.077 (0.024) 0.076 (0.024)

Market-level characteristics
Population -0.092 (0.028) -0.096 (0.029)
Number of gas stations 0.016 (0.019) 0.013 (0.019)
Number of drug stores 0.068 (0.022) 0.072 (0.022)
Number of supermarkets/centers 0.099 (0.025) 0.104 (0.025)

Dynamic investment costs
Entry cost for first store in market 2.495 (0.240) 2.316 (0.242)
1{First store in 100mi radius} 2.365 (0.317)

Entry cost for second+ store in market 9.713 (0.165) 9.526 (0.161)

Note: Standard errors are obtained via bootstrap of market-histories (200 replications). All con-
tinuous variables and store counts are in log. Business density and year fixed effects are included.
Residential rent is at the location level.
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