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Abstract

In many industries, buyers diversify their supplier base to manage supplier dis-
ruption risk. We investigate the importance of such diversification as a determinant
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choices. The model is estimated using novel data on cross-border data flows, prices,
cable characteristics, and disruptions. Counterfactual analysis reveals that supplier
diversification accounts for a large share of entry and surplus created between 2005
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1 Introduction
Supply disruptions are a prevalent concern in many industries, where natural disasters or

production failures can have economically devastating consequences. Recent examples high-

lighting the vulnerability of supply networks abound. In March 2021, the container ship Ever

Given ran aground and blocked the Suez Canal for over a week; a political protest in Febru-

ary 2022 shut down traffic on the Ambassador Bridge, which carries 25% of trade between the

U.S. and Canada; and disruptions due to COVID-19 mitigation measures and outbreaks sig-

nificantly disrupted chip supply in industries from graphic cards to automobiles. In response

to these disruptions, buyers commonly diversify their sourcing across multiple suppliers to

mitigate risks. In this paper, we examine empirically how diversification affects suppliers’

incentives to enter and compete, and more broadly, its long-run impact on market structure.

We do so in an important but under-studied setting: the undersea telecommunication cables

that comprise the global “backbone of the internet.”

The effect of supplier diversification on market structure operates through two primary

channels. First, as long as the disruptions of different suppliers are not perfectly correlated,

diversification increases the degree of horizontal differentiation between suppliers; this dif-

ferentiation insulates suppliers from competitive pressure. Second, for a fixed level of prices,

market entry by additional suppliers will increase the aggregate quantity demanded, a “mar-

ket expansion” effect; intuitively, the value of the “portfolio” of the market supply increases

with the number of competitors.

Our empirical application focuses on the global internet backbone from 2005 to 2021.

This worldwide network of undersea fiber-optic cables comprises the primary means of in-

tercontinental information transport, carrying more than 98% of all international internet

traffic (data, video calls, instant messages, and emails). Operational undersea cable net-

works are essential to well-functioning global economic and financial systems: e.g., the U.S.

Clearing House Interbank Payment System processes more than $10 trillion per day in trans-

actions with more than 22 economies via undersea cables (Federal Communications Com-

mission (2015)). Undersea cables also feature prominently in intra-continental and even

intra-national communication networks. Figure 1 shows the global undersea cable network

in 2022.1

The undersea internet cable industry is well-suited to examine the effect of the demand

for diversification on market structure. Hundreds of cable failures and repairs take place

every year; given the risk to international trade, financial markets, and social welfare, the

1We do not consider the network of terrestrial cables, arguably another important component of the
internet backbone, due to a lack of data on terrestrial cables and the relatively more complex topology of
the terrestrial cable network.
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Figure 1: The Global Internet Backbone (source: Infrapedia.com)

industry therefore places a high value on network resilience and path diversity. Industry

estimates put the financial impact from interruptions of undersea fiber-optic systems in

excess of $1.5 million per hour (Malphrus (2009)). In addition, the industry has witnessed

significant growth over the past twenty years, providing many instances of entry in a variety

of market conditions. Finally, the undersea cable industry is of interest in its own right as a

critical component of the “industrial organization of the internet supply chain.”

We leverage comprehensive data on this industry, which were obtained from TeleGeog-

raphy, a telecommunications market research firm. The data provide detailed information

on undersea cables (e.g., construction costs, cable length, ready-for-service dates, landing

stations, capacities), as well as extensive quarterly panels on bandwidth prices (at the city-

pair level) and data flows (at the country-pair level). To the authors’ knowledge, these data

have not previously been used in published economics research. We supplement this main

data source with an array of demand and cost factors that are either specifically relevant for

our setting (e.g., broadband subscriptions, data centers, internet exchange points, electric-

ity prices) or typically used in the international trade literature to predict trade flows (as

in Blum and Goldfarb (2006)). The scope of these data on both the supply and demand

side allows us to estimate a detailed and flexible bandwidth demand system and a dynamic

structural model of entry and competition between undersea cable operators.

Our empirical model considers the industry through the lens of a dynamic oligopoly game,

with repeated Cournot competition between cable operators taking place each period in each

market. We use a non-stationary Markov Perfect equilibrium concept to accommodate the

evolution of exogenous demand and cost factors in our setting: our data covers much of the
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industry’s earliest growth and witnesses substantial increases in demand and steady decreases

in costs. We define a market to be a country-pair and use details on cable landing points to

match cables to markets. The richness of the data allows us to control for many dimensions

of heterogeneity, including market-level unobserved heterogeneity and regional-time shocks.

Estimation proceeds in three steps. Bandwidth demand is estimated as a function of a

host of market characteristics, bandwidth prices, and the number of cables serving the mar-

ket; we employ cost-shifting instrumental variables to address price endogeneity. From these

estimates, we recover price elasticities and buyers’ preference for diversity. The demand

model achieves a high degree of fit and the estimated parameters are consistent with predic-

tions of a consumer-level utility maximization problem under costly supply disruptions. We

find decreasing marginal returns from diversification: e.g., entry of a second cable (holding

prices fixed) expands demand as much as a 28.3% decrease in bandwidth prices, whereas

entry of the eighth cable is equivalent to a 7.5% decrease in prices.

Next, we recover the marginal costs of bandwidth implied by the demand estimates and

the first-order conditions of the firms’ profit maximization. Third, we incorporate these

profits into the dynamic game of entry and competition between cable operators and use

a nested pseudo-likelihood routine (the NPL algorithm, Aguirregabiria and Mira (2007))

to estimate the dynamic investment costs and distribution of firms’ private information

shocks. To address concerns around convergence issues associated with the NPL algorithm

(Pesendorfer and Schmidt-Dengler (2010)), we implement several alternative estimators:

e.g., two-step estimators (e.g. Pesendorfer and Schmidt-Dengler (2008)) and the spectral

algorithm recently proposed by Aguirregabiria and Marcoux (2021). The latter estimator is

an iterative algorithm that has the benefits of imposing equilibrium restrictions, is robust

to fixed-point instability, and like the NPL algorithm, avoids the approximation of high-

dimensional Jacobians. One identification challenge in this exercise stems from the nascent

nature of the setting we study: we observe hundreds of instances of cable entry over our

data’s timeframe but only a handful of cables exiting. The lack of exit events presents us

with an identification challenge which we address by leveraging the cable construction costs

data to separately identify entry and fixed costs.

The estimated model is used for two counterfactual exercises. First, we examine how

supplier diversification influences industry dynamics, cable investment, and surplus gener-

ation. In this counterfactual, buyers cannot diversify their supplier base: new cable entry

increases competition and lowers prices but provides no benefits through diversification. We

find supplier diversification significantly drives entry: without diversification, cable invest-

ment decreases by 12%. A substantial portion of new capacity investment is thus linked to

buyers’ diversification preferences. The net present value of total surplus per market over the
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sample period averages $1.11 billion under the observed equilibrium. Supplier diversification

accounts for 11% of total surplus and 27% of consumer surplus.

Next, we assess whether market forces provide excessive or insufficient levels of diversifi-

cation. We compare entry levels under the observed equilibrium to the socially optimal level

of entry. We disentangle two distortions: business-stealing effects lead to excessive entry, as

entrants reduce incumbents’ outputs, creating a gap between social and private benefits of

entry. By contrast, diversity effects result in insufficient entry, as marginal entrants enhance

surplus through diversity but fail to fully capture it without price discrimination (Spence

(1976), Mankiw and Whinston (1986)). The dominant effect depends on the shape of the

demand curve, entry costs, and post-entry competition. We disentangle these distortions by

comparing the social planner’s solution, which chooses the optimal dynamic entry path to

maximizes total surplus, to a coordinated entry solution, maximizing producer surplus (in

both cases taking post-entry competition as given). Because both distortions are eliminated

in the first scenario and only business-stealing distortions are eliminated in the latter sce-

nario, comparing the two counterfactuals allows us to quantify the two distortions’ relative

impact on market outcomes.

The expected number of cables at the end of the sample (2021-Q4) in the market outcome

is distorted downward by diversity effects and upward by business stealing: the magnitude

of diversity distortions in terms of number of entrants ranges from 54% to 125% of the

business-stealing distortion. For most markets, business-stealing tends to dominate leading

to moderately excessive entry. Relative to the market outcome, total surplus under the

planner’s solution is on average 10% higher: 53% of this welfare gap is due to diversity

effects, whereas 47% is due to business-stealing. We analyze the cross-market heterogeneity

in the relative sizes of these distortions and which market features (e.g., the size of entry costs,

the market size, and demand growth over time) are more likely to lead to insufficient levels

of supplier diversification. We conclude with a comparative statics exercise demonstrating

the first-order impact of disruption costs on equilibrium market outcomes.

Our findings have significant implications for policy and market design, both within the

telecommunications industry and in other industries where supplier reliability is a critical

concern. Supplier diversification is a key feature in the equilibrium market structure of

international and domestic energy transportation markets (fossil fuels or electricity) among

others. Our analysis reveals that profit-maximizing suppliers are unlikely to fully internalize

the diversification-related social benefits of entry decisions, and may enter at rates that are

sub-optimal from a social welfare perspective; this suggests that there are instances where

targeted entry subsidies would pass cost-benefit tests.

Relatedly, our analytical framework has important implications for regulators evaluating
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the competitiveness of market structures in industries where supplier diversification is a key

concern. Regulators who fail to consider the additional demand generated by incremen-

tal suppliers–whose presence allows for risk diversification–may incorrectly conclude that a

market is sufficiently competitive. Similarly, antitrust authorities assessing the competitive

effects of proposed mergers in such industries must account for firms’ private incentives to

provide diversification, in order to reach accurate conclusions about welfare effects.

The rest of the paper proceeds as follows: after a literature review, Section 2 provides

background information on the industry. Section 3 presents the data used in the empirical

exercise. Section 4 describes the industry model. Section 5 discusses our estimation strat-

egy and results. Section 6 presents the results of counterfactual exercises, and Section 7

concludes.

Literature Review. This paper contributes to several strands of the literature: the liter-

ature on dynamic games of entry and exit in non-standard demand settings; the literatures

studying supply reliability and endogenous product variety; the economics of the internet

and its infrastructure; and somewhat less directly, the macroeconomic and trade literature

on supply chain disruptions and their propagation.

The first strand of literature is the empirical industrial organization literature on dynamic

entry games, particularly those involving complexities in demand, production technology, or

regulatory environments. For example, Collard-Wexler (2013) shows that cyclical demand

significantly impacts the firm size distribution and market structure in the ready-mix con-

crete industry. Similarly, Kalouptsidi (2014) and Jeon (2022) examine bulk shipping, where

time-to-build and demand uncertainty influence equilibrium prices and investment decisions.

By contrast, our paper focuses on supply uncertainty and analyzes the role supplier diversi-

fication plays in shaping market structure and welfare outcomes. Methodologically, we build

on the dynamic games estimation literature (Aguirregabiria and Mira (2007), Pesendorfer

and Schmidt-Dengler (2008)). Given the rapid growth in demand in this nascent industry,

our treatment of non-stationarity aligns with studies of high-tech commodities such as Igami

(2017).

This paper contributes to the industrial organization literature on supply reliability.

Shepard (1987) and Farrell and Gallini (1988) propose models where a monopolist may

encourage a “second source” of supply in order to credibly commit to future reliability or

prices and expand demand. In the case of electricity markets, Crew and Kleindorfer (1978)

provide early treatment of optimal reliability under demand uncertainty; Joskow and Ti-

role (2007) analyze optimal operating system reserves under potential network collapses.

Lim and Yurukoglu (2018) analyze underinvestment in electricity distribution and reliabil-

ity stemming from time inconsistency and moral hazard and how these distortions interact
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with a regulator’s political affiliation. This literature typically focuses on a single seller (or

planner), whereas we consider a case where the provision of reliability is decentralized and

relies on many suppliers’ private incentives to enter.

This paper is also related to the empirical literature on endogenous product choice (Dra-

ganska et al. (2009), Sweeting (2013), Eizenberg (2014), Berry et al. (2016), Wollmann

(2018), Fan and Yang (2020)). This literature analyzes the impact of competition on prod-

uct variety and shows that distortions similar to the ones we consider can lead to too many

or too few products being offered. We highlight a distinct source for preferences for product

variety, i.e., supply disruptions, which has received less attention in this literature.

Third, this paper contributes to the literature on the economics of the internet, partic-

ularly its infrastructure. Early theoretical studies analyzed competition, interconnection,

peering, and antitrust issues in the terrestrial internet backbone market (e.g., Crémer et al.

(2000), Besen et al. (2001), Laffont et al. (2001), Caillaud and Jullien (2003)). Greenstein

(2015) provides a comprehensive analysis of the internet’s commercialization. For under-

sea internet cables, Hjort and Poulsen (2019) find that the first undersea cable significantly

boosts local employment, wages, and firm productivity in African locations. Regarding

earlier communication technologies, Steinwender (2018), following Hoag (2006) and Gar-

bade and Silber (1978), shows that early transatlantic telegraph cables linked markets more

tightly, improving trade efficiency. Closest to our work, Jeon and Rysman (2024) models

global data flow routing and quantifies network externalities. Our paper complements their

analysis by examining supply disruptions and the distortions affecting diversity levels.

The disruptions examined in this paper relate to recent work on global supply chain

disruptions and shock propagation in international trade and macroeconomics. Recent the-

oretical work (Elliott et al. (2022), Grossman et al. (2023)) studies optimal diversification

policy under supply network disruptions. Supply chain disruptions impose significant costs,

as shown by Barrot and Sauvagnat (2016) and Carvalho et al. (2021), who use natural dis-

aster timing to estimate firm linkages in supply shock propagation. Closest to our paper,

Castro-Vincenzi (2022) models how multinational automobile manufacturers reallocate pro-

duction in response to climate shocks. We contribute to this literature by examining how

the endogenous response to disruptions via diversification shapes competition and long-run

market structure.

2 Industry Background
This section provides background information on the undersea fiber-optic cable industry.

Modern undersea cables use fiber-optic technology to transmit information from one end

(landing station) to another. Each cable is built with several fiber pairs (for inbound and
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outbound traffic), though cables typically enter service with only a fraction of capacity “lit”

or activated. Unlit capacity represents spare capacity that can be brought online without

laying a new cable, though incremental investment in capital equipment at either landing

station is required. Lighting additional capacity is a major capital expense and takes months

to complete, and once capacity is lit, it remains lit; i.e., providers do not scale capacity up

and down in real-time as in electricity markets. Additional capacity can also be added by

using new wavelengths for data transmission (i.e., exogenous improvements in wavelength

technologies).

Laying new cables (and associated equipment) is a costly endeavor, with total construc-

tion costs in the hundreds of millions of dollars. Post-construction operational costs include

electricity costs, and landing station staffing and maintenance costs in the range of $5 million

or more annually, as well as cable repairs (discussed below). Electricity costs are one of the

main components in a cable’s variable costs. Cables are designed with a theoretical working

lifespan of 20 to 30 years. Because the industry is young, only a few instances of cable exits

are observed in our data and occur mostly near the end of our sample, after 2020.2

Undersea cable faults occur frequently, most commonly from accidental shipping inter-

ference (e.g. fishing trawlers or anchors) though interruptions from natural causes and

intentional sabotage also occur. The rate of failure is significantly lower than that of terres-

trial cables, though it is offset by a much higher cost of and longer length of repair: costs

range from $250 thousand to $1 million, with typical time frames of one to several weeks

(though repairs taking months are not uncommon). Industry estimates are that hundreds of

undersea cable faults occur each year; demand for repairs to the roughly 400 active cables

(in addition to the laying of new cables) is high enough to sustain a global fleet of at least 60

cableships. In order to hedge the risk posed by the possibility of cable disruptions, buyers

purchase bandwidth on several cables on a given route, as indicated by various interviews

we conducted with industry professionals:

“No customer would buy capacity on a single cable. Cables break all the time and that is

very risky. Customers are buying on multiple cables.” (Alan Mauldin, TeleGeography).

Cables are owned by investors. In the majority of cases, a single investor owns the cable,

but for some of the largest investments (e.g., Trans-Atlantic cables), multiple investors may

form a consortium and share the investment cost. The median number of investors per cable

is 1 and the mean is 2.5. On a few routes, an investor may have an ownership stake in multiple

cables (e.g., AT&T on the United Kingdom–United States route), though this remains the

exception rather than the rule. Investors have historically been major telecommunication

2Decommissioned cables include TAT-14, CANTAT-3, Tasman 2, Atlantis-2.
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companies and governments; in recent years, they also include private enterprises specializing

in undersea telecommunication and large technology firms. Investors appoint an operating

firm (a “firm” hereafter) to administer the day-to-day operations of the cable, and we take

this firm as the decision-maker in our industry model.3 Economic regulation (of prices,

provisioning of backbone traffic, interconnections, etc.) is nonexistent in this industry. Non-

economic regulation (e.g., permitting requirements by the FCC to land a cable in the US or

data protection policies such as GDPR in the EU) may affect entry costs and demand.

Cable firms sell bandwidth in wholesale markets, and this bandwidth is purchased by a

variety of customers, which can be broken down into four broad categories: internet service

providers (e.g., Comcast, Verizon), content providers (e.g., Google, Meta), private enter-

prises such as financial institutions or stock markets, and research institutions. Contracts

are negotiated bilaterally between buyer and seller (the firm administering a cable) and

specify: the duration of the lease agreement (typically a quarter to a year), the “capacity”

or maximum bandwidth the lessee can utilize for data transmission across the cable, and

service level agreements (SLA) specifying performance metrics such as guaranteed uptime,

latency targets, and repair times in the event of a cable fault.4

Bandwidth is a product that is vertically differentiated by speed (also referred to as capac-

ity), i.e., buyers can purchase leases at 10Gbps (Gigabytes per second), 40Gbps, 100Gbps,

etc. Over the period studied in this paper, 10Gbps is by far the most common product

purchased (100Gbps was introduced only in the last few years of our sample and 40Gbps is

relatively rare), as discussed in the next section. While cables can be differentiated on other

dimensions (e.g., more favorable SLA), discussions with industry professionals indicate that

the scope for differentiation is limited. There exists limited within-market price dispersion

reflecting different contract specifications or buyer size: e.g., large buyers such as Google

pay lower prices for bandwidth than smaller buyers. Finally, some firms act both as buyer

and seller: e.g., AT&T is an investor on some routes but also purchases bandwidth on other

routes.5

3For example, the cable SEA-ME-WE 3 is owned by a consortium led by France Telecom and China
Telecom, but is administered by Singtel, a Singaporean telecommunications operator.

4SLAs often include penalties for the operating firm if these metrics are not met and have additional
details on maintenance responsibilities, processes for dealing with cable faults or damage, and any associated
costs. An uptime SLA, excluding any cable fault event, might be in the range of 99.5% to 99.99% (percentage
of contracted period over which the service is operational). In case of a cable fault, an SLA might specify a
target of 12 to 48 hours for initial response and assessment, with a broader window (e.g., a few weeks) for
complete repair.

5Content providers, such as Google, Meta and Amazon, have in recent years begun to invest in undersea
cables either directly or by entering into a purchase agreement. In Caoui and Steck (2024), we examine
this phenomenon more closely, studying 50 such investments and exploring e.g., how investment decisions
are driven by the locations of content providers’ data centers. However, of the 44 cables in which those
50 investments were made, 7 entered service before 2018 (before this type of investment became more
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The industry shares several characteristics with the midstream oil and gas sector. Owners

construct, maintain, and operate pipelines or ships (cables) and lease capacity (bandwidth) to

downstream companies (e.g., internet service providers). Contracts, negotiated bilaterally,

specify the pricing, quantity, duration, and terms of service. Some pipelines (cables) are

owned or funded by companies primarily operating in downstream or upstream markets,

while others are owned by specialists in the midstream sector.

3 Data and Descriptive Statistics
This section describes the data used in our empirical analysis: its sources, the definitions of

variables of interest, and key trends in those variables.

3.1 TeleGeography

The main data used in this study are from data provider TeleGeography, a telecommunica-

tions market research firm which has been in operation since 1989. TeleGeography collects

and retains comprehensive datasets on various aspects of the telecommunications industry.

We make use of data from two separate datasets focusing on undersea fiber-optic telecom-

munications: The Global Bandwidth Research Service and the Wavelengths Pricing Suite.

The Global Bandwidth Research Service (GBRS) contains detailed data on undersea

cables. The data on each cable include: landing points, date of entry into service, owner-

ship (list of investors), designed (or potential) capacity, length, and construction costs. In

addition, GBRS features a yearly panel of used bandwidth at the country-pair level. Used

bandwidth describes the sum of bandwidth deployed actively in a route, it provides a mea-

sure of underlying international bandwidth demand. Finally, GBRS provide information on

the location and entry date of data centers owned by major technology firms.6

To our knowledge, this dataset is the most comprehensive source available on the undersea

cable industry. Nonetheless, some data limitations are worth noting. We do not observe

cable-level revenue or market shares, nor do we have information on contracts signed between

buyers and sellers. The availability of aggregate demand for each country-pair will inform the

specification of our industry model, in particular, when it comes to the bandwidth demand

model.

We present summary statistics from the GBRS data in Tables 1 and 2. Table 1 contains

descriptive statistics on the GBRS data pertaining to undersea cable supply. The table

widespread) with 13 more entering service between 2018 and 2021; the remainder had not entered service
by the end of our sample period. Given the novelty of this trend and the minimal impact it has had in our
sample period, e.g., on price and bandwidth trends, we abstract from this consideration and do not model
content providers’ vertical integration.

6These are Meta, Microsoft, Amazon, and Google. The count data we use corresponds to the number of
“cloud regions.” A cloud region is a physical location (e.g., Palo Alto, US) where providers typically cluster
multiple data centers (e.g., as of 2022, AWS operates three data centers in the Palo Alto cloud region).
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contains data for the global network of undersea cables. Columns 2 and 3 present the

number and total length (in km) of new cables that come online in each year; cumulative

counts of the number of active cables and the total network length are shown in columns 5

and 6. Column 4 contains the (unweighted) average construction cost of the new cables in

each year, normalized by the length of the cable; construction costs are reported for only

47% of cables in the data. Columns 7 through 9 contain information on potential and active

capacities: potential capacity (in Tbps) is shown in column 7, and lit (or active) capacity

is reported in column 8.7 The share of capacity that is active (i.e., the utilization rate) is

reported in column 9.

Several trends are visible in Table 1. The industry has experienced robust growth: the

number of active cables and the total network mileage have more than doubled over this

time frame. This growth is even more striking when considering the larger capacity of newer

cables: both potential and lit capacity have increased by two orders of magnitude. Notably,

the entry rate has remained steady despite a substantial amount of spare (unlit) capacity

each year—the share of lit capacity peaks at just 35% in 2020. This suggests that capacity

constraints were not a first-order concern in this industry during the sample period.

Table 1: Descriptive Statistics on Undersea Cable Supply

Year New New km Mean cost Cum. Cum. km Potential Lit Share
Cables ’000s $m / 1000km Cables ’000s Tbps Tbps Lit

2005 13 24.9 44.3 180 572.5 87.1 10.6 0.12
2006 11 31.7 36.5 191 604.2 89.2 14.3 0.16
2007 11 7.2 80.7 202 611.4 100.5 16.5 0.16
2008 20 44.3 54.6 222 655.7 121.0 26.8 0.22
2009 17 69.1 44.0 239 724.8 142.3 34.3 0.24
2010 14 61.0 41.5 253 785.7 239.5 44.1 0.18
2011 14 29.4 39.3 267 815.1 309.8 54.5 0.18
2012 22 61.6 217.4 289 876.7 470.7 73.5 0.16
2013 11 16.9 56.6 300 893.6 748.4 93.4 0.12
2014 15 30.2 141.9 315 923.9 981.2 137.4 0.14
2015 9 19.3 61.0 324 943.1 1174.6 193.9 0.17
2016 16 64.7 466.6 340 1007.8 1479.7 292.4 0.20
2017 15 74.1 107.8 355 1081.9 1836.6 412.0 0.22
2018 18 74.0 34.7 373 1155.9 2359.3 563.8 0.24
2019 23 31.5 261.2 396 1187.4 2521.5 784.6 0.31
2020 21 68.6 103.7 417 1256.0 3171.1 1095.2 0.35
2021 17 45.3 225.3 434 1301.3 3928.3 1346.7 0.34

Note: Columns 2-4 show the number of new cables entering service in a given year, their total
length (in thousands of kms), and their average length-normalized cost (in millions of USD per
thousand km). Columns 5-6 show the cumulative number and total length of active cables by year.
Column 7 contains the networks’ potential capacity, measured in Tbps, and column 8 contains the
‘lit’ or activated capacity; column 9 shows lit capacity as a share of potential capacity.

7These figures represent inter-regional capacities, corresponding to the used inter-regional bandwidth
total in column 5 of Table 2.
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We present additional summary statistics in Table 2, shifting focus to demand-side fac-

tors. Columns 2 and 3 report the number of unique cities and countries connected to the

internet via undersea cables by year. Columns 4 and 5 show international bandwidth us-

age totals in Tbps, with column 4 providing the global total (inter- and intra-regional) of

international traffic and column 5 reporting inter-regional traffic only (comparable to the

inter-regional potential and lit capacity figures in Table 1). Columns 6 and 7 provide in-

formation on the data center regions (see footnote 6) present in TeleGeography’s dataset:

column 6 shows the number of new data center regions opened each year (starting in 2006),

while column 7 reports the cumulative total. The data in Table 2 also illustrate dramatic in-

dustry growth. The number of cities connected to undersea cables more than doubles, while

the share of countries connected increases from roughly 66% to nearly 90%. The number

of data center regions rises from 0 to 118, with significant growth occurring in recent years.

Finally, used bandwidth grows by three orders of magnitude over the sample period.

Table 2: Descriptive Statistics on Bandwidth Demand

Used Bandwidth (Tbps) Datacenters
Year Cities Countries Total Inter-Region New Cumulative

2005 549 126 5.0 1.8
2006 603 131 7.0 2.6 2 2
2007 623 132 11.5 4.3 3 5
2008 665 133 19.2 6.7 1 6
2009 694 141 30.6 10.2 4 10
2010 726 148 46.8 15.9 4 14
2011 753 150 70.1 23.3 7 21
2012 820 164 101.2 34.1 6 27
2013 834 165 145.7 49.6 2 29
2014 890 167 212.5 71.2 10 39
2015 923 167 300.0 99.5 6 45
2016 949 167 443.0 145.4 12 57
2017 984 169 666.6 224.5 13 70
2018 1, 040 172 997.4 343.0 12 82
2019 1, 097 172 1, 466.4 508.5 13 95
2020 1, 152 175 2, 124.8 715.5 15 110
2021 1, 189 175 2, 885.6 937.2 8 118

Note: Columns 1 and 2 contain the number of unique cities and countries that
have an undersea cable landing point. Column 3 contains the total used bandwidth
of the network by year in Tbps. Columns 4 and 5 provide counts (net new and
cumulative) of datacenters contained in Telegeography’s data; this data series
begins in 2006 and was not available for 2021 at the time of writing.

We also acquire data on bandwidth prices from TeleGeography’s Wavelengths Pricing

Suite. The Wavelengths dataset contains quarterly prices collected by TeleGeography from

bandwidth providers. Each observation in the dataset represents the quoted monthly price

on a 1-year unprotected lease in a particular capacity segment (e.g., 10Gbps, 100Gbps) on
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a particular city-to-city route from a particular bandwidth provider.8 The provider name is

anonymized. Coverage is not comprehensive, but TeleGeography asserts that data is sourced

on a voluntary basis from dozens of providers. In this paper, we focus our analysis on the

10Gbps capacity segment as it is by far the most commonly bought capacity over our sample

period.

Table 3 presents descriptive statistics from this dataset for the 10Gbps capacity segment

from 2005 to 2021. Column 2 presents the number of unique price quotes each year, and

columns 3-5 contain the 25th, 50th and 75th percentile of quoted prices (monthly rate, in

thousands of US$). Table 3 reveals a few empirical features worth noting. First, prices

fall significantly over time at all reported percentiles. Second, significant price dispersion

exists within a year, with the ratio of 75th to 25th percentile prices ranging from roughly

2 to more than 10. This price dispersion is expected given the heterogeneity in costs and

distances across markets (e.g., U.S.-Japan versus U.K.-France). Third, the rise in the number

of cities connected by cables (shown in Table 2) is reflected in the increase in the number of

price quotes available.

3.2 Supplementary Data

In addition to the data from TeleGeography, we use several auxiliary data sources in our esti-

mation approach. A first set of auxiliary data is sourced from the CEPII Gravity Database,

which provides macroeconomic and trade-related variables suitable for estimating the deter-

minants of international trade (Conte et al. (2021)). We source data on GDP, trade flows,

distances, and whether two countries share a common language or border.

Another data series used in estimating demand is broadband subscriptions, which we

use as a proxy for internet penetration. This data is accessed from the World Bank, which

maintains an annual panel tracking fixed broadband subscriptions with speeds of at least

256Kb per second. This includes residential and business customers but excludes mobile

internet users.

When estimating demand for bandwidth, we use an instrumental variable strategy with

electricity prices as cost-shifters. Panels of electricity generation shares are sourced from Our

World in Data (ourworldindata.org), with detailed country-level data on electricity generated

by coal, gas, and oil. Price series for coal, gas, and oil are sourced from the Federal Reserve

Economic Data (FRED) (https://fred.stlouisfed.org/). We use the Brent crude series for oil,

the global Australian coal price, and the global EU price of natural gas; the latter two are

converted to dollars per barrel of oil equivalent (BOE).

8Protected bandwidth refers to leased capacity on a cable backed by a secondary ”protection” cable.
If the primary cable fails, traffic is automatically rerouted, minimizing downtime. Unprotected bandwidth
lacks this backup, making it more susceptible to outages. Most traded bandwidth on undersea cables is
unprotected.
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Table 3: Descriptive Statistics on Bandwidth Prices (in thousands of US$)

10 Gbps Price Percentiles
Year Quotes 25th percentile 50th percentile 75th percentile

2005 359 31.8 55.5 75.9
2006 867 13.5 22.0 38.3
2007 1, 437 12.0 15.0 23.3
2008 2, 510 10.0 13.0 18.0
2009 1, 681 8.9 11.9 17.1
2010 1, 830 7.2 10.9 19.8
2011 2, 334 5.5 9.4 45.0
2012 2, 431 5.0 9.0 50.0
2013 2, 531 4.1 6.6 42.1
2014 2, 555 3.3 6.0 45.0
2015 2, 512 2.6 5.0 30.0
2016 2, 967 2.1 4.5 28.0
2017 3, 547 1.1 3.2 24.0
2018 3, 623 1.1 3.1 19.9
2019 3, 602 1.2 2.1 16.2
2020 3, 124 1.3 2.4 15.0
2021 3, 309 1.1 2.2 12.0

Note: Columns 2-5 show data for the 10Gbps service. Each row contains
the number of unique posted prices, as well as the 25th, 50th, and 75th
percentiles of posted prices. Prices represent monthly prices for a 1-year
unprotected lease.

Finally, we compile data on cable faults. TeleGeography’s GBRS dataset reports publicly

disclosed major faults since 2016 with detailed information (e.g., date fault discovered, start

of repairs, length of repairs, cause). We supplement this by hand-collecting fault data for

2013-2016 from newspapers, resulting in a final sample of 168 faults. Table A8 presents the

yearly fault counts.

The dataset represents only a subset of total faults, as noted by industry experts. This

is because the data collection focuses on publicly disclosed or notable faults. Nevertheless,

it provides valuable insights into disruption incidents and repair durations. We use the

cable faults data in our estimation: (1) to estimate the distribution of disruption shocks

and downtime, and (2) to verify that our estimated cable operating costs align with fault

propensity. We also use the fault data in robustness checks as an exogenous shifter of entry

costs and market structure in demand estimation.

These data show that disruptions are often geographically isolated, enabling diversifica-

tion. While rare cases involve more than two cables disrupted in a region-quarter,9 over 78%

of faults involve only a single cable (Appendix Figure A6). Most country pairs are connected

by multiple cables, providing scope for diversification (Appendix Figure A7).10

9Table A2 presents the list of region pairs.
10Two country pairs have zero cables in 2021 due to cable exits in 2020.
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3.3 Market Definition

In anticipation of the industry model presented in the next section, we discuss our market

definition. As outlined above, our primary data for estimating demand comes from Tele-

Geography’s GBRS and Wavelength Pricing Suite.

The GBRS dataset contains data on used bandwidth at a country-pair level on an annual

basis. The Wavelength Pricing dataset contains price quotes on bandwidth at a city-to-city

level on a quarterly basis. To strike a balance between the granularity of the pricing data

relative to the used bandwidth data, we combine the two datasets as follows. First, we

aggregate price quotes from the city-to-city level to the country-to-country level (we use a

weighted-average specification where the weights are the number of city-to-city price quotes,

but have also experimented using simple average and median); we also multiply the quoted

monthly lease prices by three to convert them from a monthly to a quarterly price. Second,

we interpolate the annual bandwidth used to the quarterly level.

At the end of this process, a market-period in our estimation sample is a country-to-

country pair in a calendar quarter. Unsurprisingly this panel is not perfectly balanced:

cables enter and price quotes are collected for new country pairs over time. Details on the

sample of markets are presented in Appendix A.11

4 Industry Model
Time is discrete with an infinite horizon t = 0, 1, 2, ..., and a period corresponds to a calendar

quarter. Markets are assumed to be independent of each other. In what follows, we consider

a specific market m.

4.1 Bandwidth Demand Under Supply Disruptions

We start by presenting static demand-side objects that are not determined by the dynamic

equilibrium. The objective of this section is to derive the aggregate demand for bandwidth

faced by cable operators from a consumer-level utility maximization problem under supply

disruptions. The m and t subscripts are omitted in this section. Proofs are included in

Appendix B.

A representative buyer faces n symmetric firms (i.e., cable operators) supplying band-

width, a homogeneous product. A firm operates one cable per market. Cables are subject

to disruptions: if the buyer purchases bandwidth qi from firm i, she receives bandwidth δiqi,

where δi is a random variable with support [0, 1], mean µ, and a density g(·) that is continu-
ous and strictly positive over the support. Denote the corresponding cumulative distribution

11Some markets consist of contiguous countries (e.g., France-Spain, US-Canada). To address concerns
that terrestrial cables may carry significant bandwidth in these markets, we either control for contiguity in
demand estimation or exclude the 34 markets with contiguous countries from our analysis.
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function G(·). For simplicity, we assume that disruption events are iid across firms.

We break down the buyer’s optimization problem into two steps. In the first step, the

buyer maximizes her utility by choosing a total amount of used bandwidth B. The band-

width B corresponds to bandwidth the buyer is committed to using—either for its internal

operation if the buyer is a content provider or selling to its downstream customers if the

buyer is an ISP. In the second step, the buyer provisions a level of purchased bandwidth Q,

in order to minimize her expected cost of disruptions; these costs are incurred whenever the

realized purchased bandwidth falls short of the used bandwidth B. We expect Q > B, i.e.,

the buyer builds a buffer stock in order to insure against the cost of disruptions. We solve

the buyer’s problem by backward induction.

Bandwidth Provisioning Problem. To ease notation, we assume that the buyer splits

the purchased bandwidth equally across firms, that is, for all i, qi = q and Q = nq.12 Given

used bandwidth B, the buyer chooses the purchased bandwidth Q to solve the following cost

minimization problem

min
Q

PQ+ γP E

[
max

{
B −Q

1

n

n∑
i=1

δi, 0

}]
s.t Q ≥ B , (1)

where P is the price of bandwidth. The buyer chooses purchased bandwidth Q to minimize

the sum of the direct cost of purchasing bandwidth (first term) and the disruption cost

(second term). The buyer incurs a disruption cost whenever the realized bandwidth Q 1
n

n∑
i=1

δi

falls short of the used bandwidth B. The cost of disruptions (per Gbps and calendar quarter)

γP is (without loss of generality) proportional to the price of bandwidth and γ is assumed

to be greater than one.

This specification of the disruption cost captures several scenarios: e.g., it can represent

the reputational cost to an ISP of failing to provide the bandwidth B they have committed to

supplying to their downstream customers, the cost of rerouting traffic via alternative paths

at the last minute, the financial costs from delayed transactions for stock exchanges, or the

lost profits to a content provider providing cloud computing services to their downstream

customers. Importantly, the disruption cost does not include the repair cost of the cable,

which is incurred by the firm. In the case of undersea cables, repair costs are negligible

compared to the disruption costs to buyers (APEC (2012)).

To guarantee an interior solution, we assume that the cost of disruption is high enough,

12This assumption is justified given that, in this industry, transaction costs from negotiations with multiple
suppliers are arguably negligible compared to the size of contracts.
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that is:13
1

γ
< µ . (2)

As shown below, this condition ensures that Q > B, so that the constraint in Problem (1) is

not binding. Let gn(·) denote the density of the random variable 1
n

n∑
i=1

δi (with support over

[0, 1]), and Gn(.) denote the corresponding cumulative distribution function. The first-order

condition with respect to Q is:

1

γ
=

∫ B
Q

0

ugn(u)du . (3)

Lemma 1. The cost minimization problem has a unique solution, with Q > B. Denote the

cost-minimizing ratio of used-to-purchased bandwidth as(
B

Q

)∗

≡ f̃(n, γ)

The ratio f̃(n, γ) is strictly decreasing in γ.

Lemma 1 shows that the cost-minimizing ratio of used-to-purchased bandwidth exists

and derives comparative statics with respect to γ. When disruptions are more costly, i.e., γ

increases, the buyer purchases more bandwidth Q to better insure against disruption risk.

At the optimum, the cost function (1) can be written as a function of used bandwidth B

B · P ·

(
1

f̃(n, γ)
+ γ E

[
max

{
1− 1

f̃(n, γ)

1

n

n∑
i=1

δi, 0

}])
≡ B · P · h̃(n, γ). (4)

We impose the following restriction on the distribution of disruption shocks.

Assumption 1. (Single-crossing) For all n ≥ 1, there exists a unique xn ∈ (0, 1), such

that, (1) Gn(xn) = Gn+1(xn), (2) Gn(x) > Gn+1(x) if x < xn, and (3) Gn(x) < Gn+1(x) if

x > xn.

Assumption 1 is satisfied by commonly used distributions: e.g., symmetric distributions

(e.g., normal, uniform), and more generally, unimodal distributions or distributions with

monotone density (e.g., Exponential, Gamma, Beta with parameters outside of the unit

square).14 By the Central Limit theorem, any distribution will satisfy Assumption 1 for n

large enough. However, we are most interested in deriving results for small n. Assumption 1

allows us to discipline the behavior of Gn for small n, ruling out non-standard distributions

13This assumption is satisfied in practice because µ is very close to one, whereas γ is at least an order of
magnitude greater than one. See the model calibration in Appendix C.

14In general, for distributions with support other than [0, 1], the assumption holds on the interior of the
support.
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(e.g., multi-modal or with sharp peaks in their density function). In practice, this assumption

is satisfied by the distribution of disruption shocks in our particular application.

Proposition 1. Under Assumption 1, the sequence h̃(n, γ) is strictly decreasing in n. More-

over, this sequence converges to 1
µ
.

Proposition 1 shows that, as the number of firms increases, the expected total cost of

provisioning bandwidth B (Equation (4)) decreases, holding the bandwidth price P fixed.15

Intuitively, with more suppliers, the variance in realized bandwidth decreases, and the buyer

is better able to diversify risk; she can reduce over-provisioning. As n grows to infinity, the

realized purchased bandwidth approaches µQ, the purchased bandwidth approaches B/µ,

the expected disruption cost converges to zero, and therefore, the total cost converges to

PQ = PB/µ.

Bandwidth Usage Problem. Given the solution to the cost minimization problem, the

buyer chooses used bandwidth B to maximize a concave utility (net of the bandwdith cost)

max
B

1

α + 1
Bα+1 −BPh̃(n, γ) , (5)

for −1 < α < 0. The first-order condition with respect to B is:

B = P
1
α h̃(n, γ)

1
α . (6)

The logarithm of used bandwidth can be expressed as a function of the bandwidth price and

the number of cables as follows:

log(B) =
1

α
log(P ) +

1

α
log
(
h̃(n, γ)

)
. (7)

An important corollary of Proposition 1 is that the function 1
α
log
(
h̃(n, γ)

)
is increasing

in n (recall α < 0). That is, with supply disruptions, aggregate demand is increasing

in the number of suppliers n: by allowing the buyer to better diversify disruption risk,

entry of additional suppliers expands demand outward. This aspect of the model shares

similarities with models where consumers value product variety (e.g., Spence (1976), Mankiw

and Whinston (1986)). Relative to previous empirical work on this topic, which typically

relies on discrete choice models (e.g., nested logit, random coefficient logit), the welfare effect

of new entry in our model are derived from a consumer-level risk diversification problem, and

are not driven by ex-ante restrictions on the unobservable characteristics space (Ackerberg

and Rysman (2005)).

15The term h̃(n, γ) can be interpreted as an “insurance premium,” that is, the extra cost beyond the direct
cost B · P that the buyer incurs in order to minimize her expected disruption costs. Proposition 1 states
that this insurance premium is decreasing in n.
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When taking this model to the data, we assume that used bandwidth in market m in

period t (measured in Gbps), denoted Bmt, is a function of the bandwidth price Pmt (in

$US), the number of cables operating in the market nmt, and an exogenous demand state

denoted dmt, which captures various market and time specific demand factors such as the

level of internet penetration or the number of data centers operating in the market.16 The

aggregate demand curve takes the log-linear form:

Bmt(dmt, Pmt, nmt) = exp

(
dmt +

∑
n

αn1{nmt = n}

)
P

αp

mt . (8)

Three points are worth noting. First, the bandwidth provisioning problem provides a di-

rect mapping between the reduced-form aggregate demand in Equation (8) and structural

parameters in Equation (6), which are rooted in consumer preferences, the distribution of

disruption shocks, and disruption costs. In particular, the price elasticity αp is related to

the curvature parameter α, whereas the coefficients αn capturing the effect of n on log(B)

are a function of the curvature parameter α, the distribution of δi, and the disruption cost

γ. Second, if the buyer cannot diversify risk by sourcing Q from multiple firms (i.e., setting

n equal to one in Problem (1)), one can obtain the counterfactual aggregate demand curve

by replacing h̃(n, γ) with h̃(1, γ) in Equation (7), or alternatively by setting nmt to one in

Equation (8). Third, if disruptions are shut down (i.e., δi = 1, almost surely), then f̃(n, γ),

and therefore, h̃(n, γ) equal one; log(B) no longer depends on n.

In Appendix C, we compute the function 1
α
log
(
h̃(n, γ)

)
given the empirical distribution

of cable disruptions, and shows that Bmt and Qmt are both increasing in nmt, with decreasing

marginal effects. The appendix also provides evidence that predictions of the bandwidth

provisioning problem match used-to-purchased bandwidth ratios observed in the data.

While the buyer’s utility is a function of used bandwidth Bmt, we note that transfers

from buyers to firms and firm profits depend on purchased bandwidth Qmt (which equals

Bmt/f̃(n, γ)). Firms’ variable costs are a function of purchased bandwidth.17 In what follows,

we take care to distinguish between Bmt and Qmt when calculating consumer surplus and

firm profits.

4.2 Cable Entry Decisions

Investment in undersea cables and bandwidth supply are modeled as a dynamic game played

in each market. A player is an operating firm administering a cable. Undersea cables are

durable equipment, making the decision to build a cable a typical case of investment under

16Market-level heterogeneity (dmt) can be accommodated in the bandwidth usage problem by scaling the
utility function, e.g., 1

α+1B
α+1e−αdmt .

17The primary variable costs like electricity consumption are determined by the cable’s operational capacity
and power requirements, which are constant regardless of the actual data transmission.
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uncertainty. The central part of the model specifies how firms make their entry decisions

as a function of market structure (i.e., the number of incumbent firms), and market-level

demand and cost state variables. Finally, an equilibrium of the dynamic game is specified.

In this setting, the demand and cost state transition processes are nonstationary; hence,

we characterize a nonstationary Markov Perfect equilibrium of the game, where strategies

and transition functions are indexed by time. We abstract from modelling the formation of

investor consortia and common ownership issues.18

Players and States. A finite number N of symmetric firms are indexed by i ∈ {1, . . . , N}.
In any period t, each firm is either active in the market or a potential entrant. A firm is

defined as active if it operates an undersea cable. We assume that a firm can operate at

most one cable per market.19 Therefore, we refer to a firm and a cable interchangeably. We

denote its state by sit ∈ {0, 1}, where sit equals 1 if the firm is active and zero otherwise.

The industry state is the aggregation of firm states st ≡ {sit}i∈N and we let s−it = {sjt}j ̸=i

denote the state of firms other than i, and nmt =
N∑
i=1

sit the total number of firms operating

in the market.

The exogenous characteristics of the market in period t consist of two main compo-

nents: (1) an aggregate demand state, denoted dmt, introduced above in Section 4.1; (2)

an aggregate cost state hmt, which captures supply factors such as input costs (e.g., elec-

tricity), improvements in bandwidth capacity provisioning (through technological advances),

the physical and geographic characteristics of the market that determine the required cable

length and number of repeaters, or the frequency of cable faults. Demand factors change over

time due to population and economic growth and increasing internet access and digitization.

Electricity costs evolve over time due to changes in global energy prices (e.g., of oil, gas, and

coal) and country-specific changes in their electricity-generation fuel mix.

18A cable is built if the discounted sum of expected payoffs is higher than realized entry costs and we do
not model how these costs are shared between investors. Common ownership, whereby an investor has an
ownership stake in multiple cables in the same market, is relatively rare (investors with multiple ownership
stakes typically have those stakes in cables in different markets). Including a consortium formation game
and common ownership considerations in the model would substantially increase its complexity and the
computational burden in estimation, while not adding much explanatory power in understanding the role of
diversification by buyers. To wit, the mean number of ownership stakes per cable-market is 1.1 and the 75th
percentile is 1.

19We rule out cases where a single firm operates multiple cables in a given market for computational
simplicity and because this is rare (see Section 2). To the extent we overstate competition in a few cases,
we would slightly overestimate firms’ marginal costs and underestimate the scale of firm-specific shocks θϵ.
Predicting a directional change in our counterfactual results from relaxing this assumption is challenging
because: i) the multi-cable firm’s profit maximization problem internalizes both business-stealing (negative)
and diversification (positive) externalities. The second counterfactual exercise solves a social planner problem
and relies less on the market conduct assumption. A fuller characterization of equilibrium in such markets
with multi-cable owners is an interesting avenue for future research.
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The vector of public information variables includes the industry state and exogenous

market characteristics. All these variables are publicly observed and denoted by the vector

Mt = (nmt, dmt, hmt).

Actions. Every period t, firms decide simultaneously and independently whether to be

active or not in the market. Let ait ∈ {0, 1} be the binary indicator of the firm i’s decision

at period t, such that ait = 1 if an incumbent firm decides to remain active in the market at

the end of period t or a potential entrant decides to enter, and ait = 0 if an incumbent exits

or a potential entrant stays out at the end of period t. Firms that exit or potential entrants

that decide to stay out are replaced by a new set of potential entrants in the following

period.20 We use the variable a−it to denote the vector of actions taken in period t by all

firms except firm i.

Firms’ choices are dynamic because of partial irreversibility in the decision to enter a

market, i.e., sunk costs. At the end of period t, firms simultaneously choose their action ait

which determines their next-period state sit+1. We model the choice of entry and exit as a

game of incomplete information, so that each firm i has to form beliefs about other firms’

entry and exit choices.

4.3 Period Profits

Firm i’s period profits, net of private information shocks, are

πi(ait,Mt) = V Pi(Mt)− FCmt(sit)− ECmt(sit, ait) + EVm(sit, ait), (9)

where V Pi(Mt) are variable profits, FCmt is the fixed cost incurred by firm i to operate

an undersea cable in market m, ECmt is the entry or set-up cost of a new cable, and EVm

is the scrap value from retiring an exiting cable. The variable profits V Pi(Mt) are equal

to the difference between revenue from selling bandwidth on the undersea cable and the

variable costs of operating the cable (e.g., maintenance, energy costs). Bandwidth is a

high-tech commodity with limited scope for differentiation, and hence we assume Cournot

competition among undersea cable carriers that are active in period t. We focus on a Nash

equilibrium in the spot market for bandwidth. Thus, the market structure (summarized by

the industry state nmt), the aggregate states (dmt, hmt), and the aggregate demand model

for purchased bandwidth (Qmt) completely determines each firm’s equilibrium variable profit

V Pi(Mt) from competing in period t. This parsimonious formulation allows us to handle

20This assumption is for computational convenience, as we avoid having to solve an optimal stopping
problem for potential entrants. It does not affect the (static) estimates of demand and cost states, although
it is likely to have an effect on estimates of some of the dynamic parameters. In this industry, potential
entrants face time-limited opportunities due to factors like financing windows, landing rights, permits, and
environmental assessments. These factors, with their inherent time constraints, support the assumption of
short-lived potential entrants.
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the dynamic oligopoly game of entry and exit with a tractable state space. The fixed cost of

an active firm, FCmt, is incurred in any period where the firm is active (sit = 1) and reflects

the need for continual investment in maintenance, expected cable repairs, and upgrades to

facilities and equipment.

At the beginning of period t, each firm draws a vector of private information shocks

associated with each possible action ϵit = {ϵit(a)}a∈{0,1}. We assume that the shocks ϵit are

independently distributed across firms and over time. In our application, these shocks will

be distributed Type 1 extreme value, scaled by a parameter θϵm which can vary by market.

It will be convenient to distinguish two additive components in the period profit function:

Πit(ait,Mt, ϵit) = πi(ait,Mt) + ϵit(ait) . (10)

4.4 Dynamic Optimization and Equilibrium

Firms make their dynamic discrete choices of entry and exit to maximize their discounted

sum of expected profits. They discount their future stream of profits by a factor β ∈ (0, 1),

with rational expectations regarding the endogenous evolution of market structure and the

exogenous evolution of demand and production costs.

We focus on Markov-Perfect Bayesian Nash Equilibria (MPE). We first define firm strate-

gies, value functions, and then the equilibrium conditions. A firm’s strategy, at time t,

depends only on its payoff-relevant state variables (Mt, ϵit). A strategy profile is denoted

α = {αit(Mt, ϵit))}i∈I,t≥0 .

Given strategy profile α, firm i’s value function satisfies

V α
i,t(Mt, ϵit) = max

ait∈{0,1}

{
vαi,t(ait,Mt) + ϵit(ait)

}
, (11)

where vαi,t(ait,Mt) are choice-specific value functions. The choice-specific value function for

active firms are given by

vαi,t(ait,Mt) =

{
πi(1,Mt) + β Et

[
V α
i,t+1 (Mt+1, ϵi,t+1)

]
if ait = 1

πi(0,Mt) if ait = 0
, (12)

where the next-period state Mt+1 is formed of the next-period market structure nm,t+1, and

exogenous market-level variables (dm,t+1, hm,t+1); the fixed costs and scrap value are included

in πi(ait,Mt) as specified in Equation (9). The distribution over next-period states Mt+1 =

(nm,t+1, dm,t+1, hm,t+1), conditional on current state Mt and action profile at = (ait, a−it),

is given by the transition matrix Ft(·|·) which is indexed by time because the processes are
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nonstationary. For potential entrants, the choice-specific value functions are given by

vαi,t(ait,Mt) =

{
−ECmt + β Et

[
V α
i,t+1 (Mt+1, ϵi,t+1)

]
if ait = 1

0 if ait = 0
. (13)

A MPE is characterized by a strategy profile α∗ such that for every player, state, and period

α∗
i,t(Mt, ϵit) = arg max

ait∈{0,1}

{
vα

∗

i,t (ait,Mt) + ϵit(ait)
}
, (14)

and beliefs about rivals’ entry and exit decisions are dictated by α∗. The probability that firm

i chooses action ait in period t given state Mt (hereafter, the conditional choice probability

or CCP) is defined as

Pα
t (ait|Mt) ≡ Pr(α∗

i,t(Mt, ϵit) = ait|Mt) . (15)

One can express the choice-specific value function as a function of CCPs instead of strategies.

That is,

vPi,t(ait,Mt) = πi(ait,Mt) + β
∑
a−it

∑
Mt+1

V
P

i,t+1 (Mt+1)Ft(Mt+1|Mt, at)Pt(a−it|Mt) , (16)

where at = (ait, a−it) and V
P

i,t is the ex-ante value function expressed before the realization

of the private shock ϵit

V
P

i,t(Mt) =

∫
max

ait∈{0,1}

πi(ait,Mt) + ϵit(ait)

+β
∑
a−it

∑
Mt+1

V
P

i,t+1 (Mt+1)Ft(Mt+1|Mt, at)Pt(a−it|Mt)

 dG(ϵit) .

(17)

If private shocks are distributed Type 1 extreme value (with scale parameter θϵm), an

optimal strategy for firm i will map into equilibrium CCPs of the form

Pt(ait|Mt,P) =
exp

(
vPi,t(ait,Mt)

θϵm

)
∑

a′∈{0,1}
exp

(
vPi,t(a

′,Mt)

θϵm

) . (18)

Multiple equilibria may exist. In our identification approach, we assume that markets with

the same observable characteristics select the same equilibrium, and we verify that estimates

obtained using a two-step estimator—a procedure that is robust to multiplicity—are close

to those obtained using iterative methods. For our first counterfactual exercise, we initialize

the algorithm at a large number of starting values and converge systematically to a unique

fixed point. For the second counterfactual exercise, we solve a social planner problem (as a

single-agent dynamic decision problem).
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5 Identification and Estimation Approach

5.1 Identification

We follow the literature on the identification of dynamic decision problems and assume that

the discount factor and the distribution of firm shocks are known.21 We allow the scale of the

firm shocks θϵm to depend on entry costs, as described below. The scale of firm-specific shocks

is identified because variable profits are treated as observed when estimating the dynamic

model.

Aguirregabiria and Suzuki (2014) study the identification of market entry and exit games.

They show that fixed costs, entry costs, and exit values are not separately identified. In our

model, we normalize the exit value to zero and estimate entry and fixed costs. Industry

reports suggest that while raw materials and equipment from retired cables can be reused,

most (94%) unused undersea telephone cables are abandoned on the seabed The Guardian

(2016), supporting our normalization of scrap values.

The industry’s recent nature presents us with a challenge: exit events are rare. Without

observing exits, we cannot separately identify entry costs from fixed costs, even with the

above normalization. To address this, we use cable-level construction cost data to estimate

entry costs outside the dynamic model. Once entry costs are estimated, firms’ optimal entry

decisions allow us to recover fixed costs.

Two key parameters enter our estimation and counterfactual analysis: the elasticity of

bandwidth demand with respect to prices and the dependence of bandwidth demand on the

number of operating cables. The first is identified using an instrumental variable approach

based on cost shifters, detailed in Section 5.3. The second set of parameters is identified

under assumptions similar to the endogenous product variety literature (e.g., Eizenberg

(2014), Wollmann (2018), Fan and Yang (2020)): firms make entry decisions before current-

period transient demand and cost shocks are realized. This assumption is natural in our

setting, as entry decisions typically occur at least a year before the cable becomes operational,

and timing of entry—after conditioning on state variables—depends on idiosyncratic shocks

(e.g., construction delays) unrelated to transient demand shocks. Robustness checks for this

assumption are provided in Section 5.3, and we discuss the role of time-to-build in Appendix

F.1.

Finally, given the availability of a long panel, we control for persistent market-level un-

observed heterogeneity in demand and costs with fixed effects.

21In the estimation approach, we experiment with discount factors ranging from 0.90 to 0.975, with 0.95
as a baseline, and assume that firm-specific shocks follow a Type-1 extreme value distribution.
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5.2 Solution Method and Estimation Approach

In our empirical approach, we follow three steps. First, we estimate demand for bandwidth

in each market to recover price elasticities and the relationship between demand and the

number of operational cables. Second, we recover the marginal costs of bandwidth implied

by the demand estimates and the firms’ first-order profit-maximization conditions. These

static estimates for each market-period enable computation of variable profits per cable under

different market structures and time periods. We also estimate the transition processes of

exogenous components affecting demand and cost states. Third, we incorporate these profits

into a dynamic game of entry and competition among cable operators to estimate the fixed

costs of operating cables and the scale of firm-specific logit shocks.

In this section, we take the outputs of the first two steps as given and give an overview

of the methods used to solve and estimate the dynamic game (third step). The methods

used are based on existing literature, with full details presented in Appendix D. We begin by

discussing how the model is solved, as estimation of the dynamic model involves only small

extensions to the solution procedure.

Solution Method. The dynamic game is solved via policy iteration (Judd (1998), Rust

(2000)). This approach consists in iterating repeatedly between two steps: a given iteration

starts by updating the ex-ante and choice-specific value functions given the current vector of

CCPs (policy evaluation), then these value functions are used to update the vector of CCPs

(policy improvement). The algorithm iterates until value functions and CCPs converge, up

to a pre-defined tolerance level.

Three important features are worth highlighting. First, because the demand and costs

states may follow non-stationary processes, we adopt as equilibrium concept a symmetric

non-stationary MPE, in which time becomes a state variable. To maintain tractability, we

assume that the industry enters a stationary regime after some period T (in practice, we

use the last quarter of 2021). Second, because there are too few exit events over our sample

period, we do not model exit decisions. Cable operators choose optimally when to enter, but

once in the market, we assume that incumbents remain active. We revisit this assumption

and incorporate cable design life (in the order of 25 years) and exogenous retirement dates

in Appendix F.2. Third, we assume that, among all potential entrants, only one firm has an

opportunity to enter each period.22 This assumption serves two purposes: it rules out the

possibility of multiple cables entering in the same period which does not occur in our data;

and as detailed in Section 6, it greatly simplifies the solution of the social planner’s problem.

Estimation Approach. The objective of the dynamic game estimation is to recover the

22The total number of firms N per market is set to the maximum number of cables observed in the data
for that market plus two.

25



level of fixed costs FCm and the scale parameter of the firm-specific shock θϵm. We denote

these parameters θm ≡ (FCm, θ
ϵ
m). Our baseline estimator is a nested pseudo-likelihood

(NPL) procedure following Aguirregabiria and Mira (2007).23 This procedure relies on a

similar iterative procedure as the one used to solve the model, with an added estimation

step.

In some cases, the NPL algorithm may fail to converge if the fixed point correspond-

ing to the data generating process is unstable (Pesendorfer and Schmidt-Dengler (2010)).

To address this concern, we implement several alternative estimators: two-step estimators

(1-PML and 1-MD) and the spectral algorithm recently proposed by Aguirregabiria and

Marcoux (2021). The latter estimator does not iterate on the best-response mapping to

attain a fixed-point, rather, it solves for the root of a nonlinear system of equations using

a quasi-Newton method. As a consequence, the spectral approach is able to find unstable

fixed points that would be unattainable by the NPL algorithm. One advantage of the iter-

ated procedures above (e.g., imposing equilibrium restrictions) is that they are robust with

respect to the consistency of the initial estimates of CCPs.

We compute standard errors by bootstrap where markets are re-sampled (300 replica-

tions). To account for the uncertainty in the static demand and marginal cost estimates, the

entire three-step procedure (demand, marginal costs, and dynamic parameter estimation) is

performed on each bootstrap sample.

5.3 Demand Model

In this section, we estimate demand-side objects that are not determined by the dynamic

equilibrium: the demand for bandwidth and the transition of the exogenous demand state

variables.

Bandwidth Demand. The empirical analog of the aggregate demand curve presented in

Section 4.1 (Equation (8)) is

log(Bmt) = αp log(Pmt) +
∑
n

αn1{nmt = n}+ α2Xmt + ηm + ηr(m)t + ϵmt , (19)

where Xmt are demand shifters, ηm is a market-specific fixed effect, and ηr(m)t is a region-

pair by year fixed effect. To capture potential non-linear effects of the number of cables

nmt, we include it as a categorical variable.24 The term Xmt includes fixed broadband

subscriptions, measures of Gross Domestic Product (GDP), aggregate trade flows, and the

number of data centers; we restrict the coefficients on these variables to be the same for

23A “one-step ahead” CCP estimator like that proposed in Arcidiacono and Miller (2011) would help
in estimating the game with a nonstationary environment but is precluded in practice by the very limited
number of exit events in the data.

24The omitted category is “zero undersea cables.” Including observations for market where undersea cables
have not yet entered allows us to control for the baseline level of demand through other indirect paths.
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both countries forming the market. It also includes bilateral measures such as the distance

between the two countries, and whether they share a common language and/or land border

(in specifications without market fixed effects). Market fixed effects capture unobserved

heterogeneity such as cable fault propensity. Region-pair by year fixed effects allow us to

capture regional time trends, e.g. dynamically changing composition of buyers (internet

backbone providers, content providers, private enterprises), or transient regional demand

shocks: examples include GDPR regulation in the EU that may affect data flows between

the US and Europe or the growth in content delivery networks (CDNs) that allow local

storage of data near end-users.25

We address the issue of endogeneity of prices via instrumental variables.26 In particular,

bandwidth prices are instrumented using marginal costs of electricity generation, a cost

shifter. We use panels of electricity generation shares (by coal, gas, oil) at the country-level

and quarterly time series data on prices of coal, gas, and oil, as detailed in Section 3.

Table 4 reports the results of the estimation of Equation (19). We show the OLS specifi-

cation in columns (1) to (3). We find that demand shifters such as country-level broadband

subscriptions, GDP, and the number of data centers have a positive effect on bandwidth

demand.

The first and second stages of the IV regression are shown in columns (4) and (5) (model

IV-1). The first-stage indicates that electricity costs are strong predictors of bandwidth

prices.27 Once the endogeneity of bandwidth prices is accounted for, the price elasticity

increases (in absolute value) to -1.36. This is consistent with the expected direction of

the bias of the OLS regression. Column (5) also reports the first-stage F-statistic for the

weak identification test which indicates that the instrument strongly predicts the endogenous

variable.

With respect to the role played by the number of cables, entry of additional cables has a

positive and significant effect on demand, holding bandwidth prices fixed. This corresponds

to a “market expansion” effect as described in Section 4.1. In Figure 2, we plot the coef-

ficients from column (5) of Table 4. The marginal effect of the number of undersea cables

is decreasing, suggesting decreasing marginal returns from diversity.28 The effect of adding

25Controlling for these dynamic trends is necessary in order to accurately estimate the diversification
parameters {αn} and avoid over-attribution of demand growth to cable diversity as more cables enter over
time.

26In our setting, a source of price endogeneity could be the correlation between demand and cost shocks.
If marginal costs or the price elasticity depend on the quantity produced, demand shocks may also be
transmitted to prices.

27We note that bandwidth prices are more correlated with the change in electricity costs. One interpreta-
tion is that lagged electricity costs are strongly positively correlated with current bandwidth prices.

28We formally test the monotonicity of the effect of the number of cables using likelihood ratio tests for
inequality-constrained models (Silvapulle and Sen (2005), Grömping (2010)). We consider two basic test
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a second cable (holding prices fixed) on bandwidth demand expands demand as much as a

28.3% decrease in bandwidth prices, adding a third cable is equivalent to a 19.3% decrease

in prices, and adding an eighth cable is equivalent to an 7.5% decrease in prices. In Ap-

pendix C, we show that the shape and magnitude of these diversity estimates match the

predictions of the consumer-level bandwidth provisioning problem, calibrated with data on

cable disruptions and repair durations.

In the remainder of the paper, we use estimates based on a specification of log(Bmt) as

a function of log(1 + nmt) shown in column (6) of Table 4 (model IV-2).29 The estimated

effect of nmt based on this logarithmic specification is plotted as red squares in Figure 2.
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Figure 2: The marginal effect of the number of operating undersea cables on used bandwidth (in log). The
specifications with cable count as a categorical variable and with the logarithm of (one plus) the number of
cables are shown.

Finally, we conduct robustness checks with respect to effect of the number of cables.

As explained in Section 5.1, our baseline specification assumes that firms make entry deci-

sions before the realization of current transient demand shocks: the exact timing of entry,

therefore, reflects idiosyncratic shocks (e.g., time-to-build, delays in construction) that are

unrelated to unobserved demand shocks. Nonetheless, we address concerns of endogeneity

of the number of cables via instrumental variables and a difference-in-difference approach

in Appendix E. We find quantitatively similar results with these alternative identification

strategies.

problems:
(1) H0: α1 = α2 = · · · = α8, against H1: α1 ≤ α2 ≤ · · · ≤ α8 (with at least one strict inequality). The
p-value of this test is 6 · 10−4. Equality of all restrictions is rejected.
(2) H0: α1 ≤ α2 ≤ · · · ≤ α8, against H1: at least one inequality violated (e.g., αn > αn+1). The p-value
of this test is 0.5484. This null hypothesis is not rejected, i.e., the data do not provide support that these
monotonicity restrictions are not all true.

29The first-stage in model IV-2 is omitted; estimates are very close to those shown in Column (4).
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Table 4: Estimation Results: Used Bandwidth (in log)

OLS IV-1 IV-2

(1) (2) (3) (4) (5) (6)
First-stage Second-stage Second-stage

Bandwidth Price (10G, log) -0.926 -0.733 -0.214 -1.360 -1.437
(0.0876) (0.0605) (0.0530) (0.295) (0.297)

Number of undersea cables
One cable 0.388 0.299 0.158 0.0165 0.195

(0.669) (0.802) (0.167) (0.0808) (0.208)
Two cables 0.631 0.665 1.072 0.0198 1.114

(0.666) (0.816) (0.338) (0.110) (0.345)
Three cables 1.112 1.072 1.412 -0.135 1.261

(0.687) (0.806) (0.357) (0.129) (0.367)
Four cables 1.322 1.299 1.835 -0.171 1.643

(0.819) (0.853) (0.407) (0.155) (0.410)
Five cables 1.413 1.386 1.765 -0.243 1.489

(0.731) (0.842) (0.434) (0.192) (0.452)
Six cables 1.515 1.416 1.561 -0.363 1.157

(0.741) (0.890) (0.500) (0.199) (0.508)
Seven cables 2.566 1.507 2.080 -0.507 1.513

(0.772) (0.831) (0.503) (0.238) (0.534)
Eight or more cables 1.460 1.504 2.305 -0.589 1.637

(0.835) (0.947) (0.506) (0.227) (0.569)
Demand factors
Fixed Broadband Subscriptions (log) 0.370 0.208 0.174 0.411 0.420

(0.116) (0.111) (0.0771) (0.133) (0.132)
GDP (log) -0.0646 0.932 0.0221 0.972 1.288

(0.135) (0.302) (0.197) (0.300) (0.312)
Aggregate trade flow (log) -0.00272 -0.0603 0.0261 -0.0317 0.00808

(0.0854) (0.0496) (0.0378) (0.0770) (0.0850)
Number of data/cloud centers (log) 0.622 0.165 0.0194 0.193 0.188

(0.0800) (0.0800) (0.0633) (0.115) (0.118)
Distance (km, log) -0.0203

(0.134)
Common official language 0.391

(0.214)
Contiguous 0.694

(0.264)
Electricity price (log) 0.0510

(0.0210)
% change in Electricity price -0.218

(0.0349)
Number of undersea cables (log) 0.882

(0.284)
Country Pair FEs No No Yes Yes Yes Yes
Region Pair × Year FEs No No Yes Yes Yes Yes

Weak Identification test 22.31 22.58
Endogeneity test (p-value) 26.8 (0) 28.1 (0)
R2 0.39 0.71 0.97 0.96 0.95
Adjusted R2 0.39 0.71 0.97 0.95 0.95
Observations 4908 3863 3849 3863 3863 3863

Note: The unit of observation is a country pair by quarter. Standard errors are clustered at the country pair level. Columns
(4) and (5) show the first and second stages of the IV regressions where log(Pmt) is instrumented. Column (6) shows the
same second stage as Column (5), but the number of cables is included in logarithm instead of as a categorical variable.
Distance corresponds to the bilateral distances between countries, calculated as a weighted arithmetic average of the geodesic
distances between the main cities in these countries, where population weights are used. For unilateral variables (GDP, fixed
broadband subscriptions, data centers, electricity prices), we restrict the coefficient to be the same for both countries in a
pair.

29



There are potential limitations to this demand specification. The first set are akin to

issues arising in studies of airline markets (with stops and connections). First, bandwidth

deployed in a given market (e.g., US–UK) may also include traffic originating from other

countries that lack direct cable connections (e.g., traffic between Belgium and the US tran-

siting through the UK), whose characteristics are not controlled for in the regression (Xmt).

We note, however, that the demand model has a very high fit (R2 = 95%) indicating that

any such unobserved characteristics have limited explanatory power.

Second, we assume that bandwidth deployed in a market (Bmt) is carried only by cables

directly connecting the country pair (nmt), and is not connecting via other countries. Dis-

cussions with industry professionals suggest that this indeed tends to be the case because

of connection costs and latency considerations. This assumption is reflected in our focus on

markets with direct cable connections, i.e., we do not attempt to model the unobserved and

complex routing of global data flows. We provide further justifications for these assumptions

in Appendix H.

Third, the demand system does not explicitly account for substitution patterns across

firms, due to a lack of data on firm-level market shares. This concern is alleviated by

the relative homogeneity of bandwidth as a product and the limited degree of supplier

differentiation.

Purchased Bandwidth. When computing transfers from consumers to firms (PmtQmt) and

firm profits, we convert used bandwidth Bmt into purchased bandwidth Qmt using the used-

to-purchased bandwidth ratio f̃(nmt, γ) given by the buyer’s first-order condition (Equation

(3)). To compute the function f̃(n, γ), we first estimate the distribution of disruption shocks

using data on cable faults and repair durations, then calibrate γ to match the reduced form

estimates from Equation (19). Details are provided in Appendix C. In the remainder of

the paper, we use a calibrated value of γ equal to 120, but also test the sensitivity of our

counterfactual predictions for γ ∈ [40, 200] in Section 6.

Demand State Variable. The estimated demand state variable dmt is defined as the

intercept of the (log) demand curve:

dmt ≡ α̂2Xmt + η̂m + η̂r(m)t + ϵ̂mt . (20)

Note that while this equation defines an estimator of dmt, we omit the hat notation to

aid legibility in what follows. The residual of the IV regression is included in dmt as it

captures omitted time-varying demand shifters.30 The market and region-year dummies are

30Firms make entry decisions after observing dmt, therefore, current period actions ait are correlated with
ϵmt. However, market structure nmt at the beginning of the period is not correlated with ϵmt as long as
demand shocks are not serially correlated, which we verify using the demand residuals. The estimates when
instrumenting nmt (Table A3 in Appendix E) also provide support for this assumption.
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also included to control for market-specific unobserved heterogeneity and regional trends.

Using the demand estimation toward the construction of a demand state variable has the

benefit of allowing us to combine several observed and unobserved demand factors affecting

bandwidth demand (i.e., the Xmt’s and fixed effects) into a single index. This is particularly

helpful in anticipation of estimation and computation of equilibria of the dynamic game as

it drastically reduces the dimensionality of the state space.

For purpose of illustration, we include plots of used bandwidth Bmt in level and logarithm

(top and middle panels) and the demand state dmt (bottom panel) for a sample of markets

in Figure A8 of Appendix I. Demand for bandwidth increases exponentially over the sample

period, with some degree of heterogeneity across markets of different sizes. This exponential

growth is the result of both the widespread adoption of the internet on the demand side, with

increased usage due to new activities such as social media, streaming, and cloud computing

and storage; and on the supply side, advancements in telecommunication technologies which

enable faster and more cost-efficient data transmission. The demand state dmt corresponds

to the portion of total used bandwidth Bmt that is not explained by falling prices (due to

cost improvements or competition) or greater diversity but instead is driven by the evolution

of exogenous demand factors.

The estimates from Equation (19) imply that the dramatic reduction in prices (the term

αp log(Pmt)) is the main driver of the observed increase in bandwidth demand. On average,

prices decrease by 6.7% annually or by 71% over our timeframe: based on the estimated

price elasticity, this accounts for 75% of the increase in bandwidth demand over 2005-2021.

In comparison, the increase in the number of cables explains 13% of the growth in bandwidth

demand. The remainder is due to exogenous demand factors. We note that falling bandwidth

prices likely affect the cost of supplying downstream internet products (e.g., smartphones

adoption, cloud computing and storage, or data-intensive applications such as social media),

and therefore, may also be reflecting an increase in the quality and variety of downstream

internet products.

Transitions of the Demand State. We specify the evolution of the demand state variable

dmt as a first-order autoregressive process (AR(1)), where the auto-regressive parameter is

homogeneous across markets but the mean varies over markets (i.e., market-specific drift

term κm), as follows

dmt = κm + ρddm,t−1 + νmt . (21)

The parameters of this AR(1) process are estimated by full maximum likelihood.31 The

estimate of the autoregressive coefficient is 0.929 (se = 0.005). Other estimation methods

31We have a long panel (16 years of quarterly data) which alleviates concerns related to the incidental
parameter problem.
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(within group, first-difference, and OLS) yield similar results. We also explored alternative

OLS specifications that include a time trend, shown in Appendix Table A9. Column (1) sug-

gests that the process for dmt generally trends upward. Once we include both the time trend

and lagged value dm,t−1, in column (3), the time trend is no longer statistically significant.

This may be due to multicolinearity between the time trend and dm,t−1. Additionally, the

stationary AR(1) process in Equation (21) can present an upward trend in the short run,

because the initial value dm0 is below the long-run expectation κm

1−ρd
.

In the remainder of the estimation, we proceed using the specification in column (2) of

Table A9. Appendix H shows the model fit and provides evidence that this specification fits

the data well.

In anticipation of the estimation of the dynamic game, we use the method in Tauchen

(1986) to discretize this AR(1) process and obtain the transition matrix of the discretized

variable on a finite support. The support of the demand state is allowed to vary by market.

5.4 Marginal Costs Estimates

In this section, we present the estimation of cable operators’ marginal costs of bandwidth.

To estimate these costs, we combine the demand estimates from the previous section and

the first-order conditions of the firms’ period profit maximization problem. We assume

Cournot competition between cable operators that are active in period t. This conduct

assumption is motivated by features of the industry and discussion with industry experts:

cable operators light capacity in advance and every period (i.e., either activate new fiber

pairs or new wavelengths on lit fiber pairs) and are committed to selling their lit capacity.

This is in line with strategic behavior under the model of Cournot competition. We test this

conduct assumption in Appendix H.32

Marginal costs of supplying bandwidth are assumed to be symmetric across suppliers but

can vary by market and over time to capture heterogeneity in cost factors across regions and

technological advances as discussed below. The symmetry assumption is motivated by our

data source which does not report cable-level market shares. We explore the robustness of

our results to relaxating the cost symmetry assumption in Appendix F.3.

Recovering Marginal Costs. In market m and period t, firm i’s first-order condition with

respect to its output qimt is

Pmt(qimt, q−i,mt) +
∂Pmt

∂qimt

qimt = mcmt , (22)

32One implication of this assumption is that a single price Pmt prevails for each market-period. We describe
our raw price data and how it is aggregated to the market-period level in Section 3.3. While in our raw data
some intra-market-period variation in prices exists, it is limited: a regression of quoted prices on market by
period fixed effects yields an R2 value of 90.6%.
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where, under a symmetric equilibrium, qimt equals Qmt/nmt.

Equation (22) is used to infer the marginal costs, mcmt, of suppliers active in each market

and time period. mcmt corresponds to the marginal cost of supplying one unit of the product

(10Gbps of bandwidth over a calendar quarter). Figure 3 shows box-plots of marginal costs

estimates for a subsample of region pairs over time.

The downward trend in marginal costs arises from two main factors. First, economies

of scale may enable cable operators to expand capacity with decreasing unit costs. Second,

technological advances reduce the cost of deploying additional bandwidth. These include

fiber-optic transmission upgrades and improvements in software-defined networking that

benefit both new entrants and incumbents (see Appendix F.3 (footnote 50) for examples).

Significant cost heterogeneity exists across region pairs: the lowest costs are observed in

Trans-Atlantic and Intra-Europe markets, while the highest costs are found in Intra-Asia-

Oceania and Latin America-North America markets. Within a region pair, costs can vary

by an order of magnitude across markets.

We investigate how marginal costs vary with cable characteristics and other cost shifters

and the relevance of economies of scale in Appendix G.

Transition of Marginal Cost State. In anticipation of the estimation of the dynamic

game, we recover the transition process of marginal costs. We define the cost state variable

hmt as the logarithm of the marginal cost, that is,

hmt ≡ log(mcmt) , (23)

where, as with dmt, we omit the hat notation for legibility. The evolution of the cost state

variable hmt is specified as a non-stationary AR(1) process with a time trend, where the

auto-regressive parameter is homogeneous across markets but the mean varies over markets

(market-specific drift term) as follows,

hmt = τm + ρhhm,t−1 + δt+ ξmt . (24)

The parameters of the AR(1) process are estimated by maximum likelihood. Other esti-

mation approaches (within group, OLS) give similar results. The autoregressive coefficient

estimate is 0.887 (se = 0.001) and the time trend δ estimate is −0.024 (se = 6 · 10−6). As

with the demand state variable dmt, we discretize the AR(1) process for hmt to allow for

tractable estimation of the dynamic game. Because the process is non-stationary, we obtain

the transition matrix for each period. The support of the cost state hmt is allowed to vary

by market. Appendix H illustrates model fit and provides evidence that this specification

fits the data well.
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Figure 3: Marginal Cost Estimates by Region Pair
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Notes: The figures display box-plots of marginal costs estimates for a subset of region pairs over time. Each
white bar shows the first and third quartiles of the marginal costs distribution across markets (country pairs)
in a given region pair. The black segment shows the median of this distribution. The unit is US$ per quarter
at 10Gbps capacity.

5.5 Dynamic Investment Cost Estimates

In the last step of our estimation approach, we combine the static estimates (from the

demand model and firms’ marginal costs) to construct period profits and incorporate these

profits into firms’ dynamic game of entry. The dynamic parameters of interest are the entry

costs, fixed costs, and the scale of the private information shocks.

As discussed in the identification of the model (Section 5.1), we cannot separately iden-

tify entry costs from fixed costs because we do not observe sufficiently many exit events.

Therefore, we start by recovering entry costs directly from data on cable construction costs.

Next, we follow the methodology outlined in Section 5.2 to estimate the level of fixed costs

and the scale of the logit shocks.

Entry Costs. Our data source provides construction cost information for 47% of active

cables. The main cost drivers for undersea cable construction are: (1) undersea components,

including fiber, cable, repeaters, and branching units; (2) the ”dry plant,” encompassing
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Submarine Line Termination Equipment, power feeding equipment, monitoring systems,

and network protection equipment; and (3) marine operations, such as route surveying,

cable loading, laying, and burial. Undersea components are the most distance-sensitive and

typically the costliest, as they determine the quantity of cable, fiber, and repeaters required.

In our sample, the average construction cost is $244 million, while the median is $66 million.

Figure A11 in Appendix I shows cable-level construction costs relative to cable length (in

level and log).

We use the construction cost data to predict entry costs for all remaining markets. This is

done by regressing construction costs on cable length and region fixed effects, which capture

regional differences in topology: e.g., geographical features, such as shallow waters or fault-

prone areas, significantly impact fiber installation costs. Entry costs are predicted using the

average cable length of all operating cables in a market, as cable length data is available

for all active cables. For baseline estimates, we assume entry costs remain constant over

time within market. Appendix F.4 relaxes this assumption, modeling time-dependent entry

and fixed costs to account for technological advances in cable construction. These advances

modestly reduce entry costs over time, and our main conclusions are not sensitive to this

more flexible specification.

Fixed Costs and Scale Parameter. Fixed operational costs include administrative costs

for office equipment, administrative and network staffing, marketing, legal and regulatory

fees, as well as network operation costs for maintenance and upgrade of undersea equipment,

landing stations, and network operations facilities (see Appendix F.3 for examples of such

system upgrades).

Given the large heterogeneity in cable lengths (e.g., Belgium-United Kingdom and Japan-

United States), we allow the fixed costs and the scale of the logit shocks to vary across

market. In particular, we parameterize the (quarterly) fixed costs and scale parameter as

linear functions of the entry costs: FCm = δFCECm and θϵm = δϵECm.

Although the parameters (δFC , δϵ) are separately identified because static profits are

“observed” when estimating the dynamic game, in practice, we encountered the presence of

multiple local maxima of the likelihood function in the ratio δFC

δϵ
.33 To address this problem,

we estimate the scale parameter δϵ under different values of δFC which are informed by

discussion with industry professionals and various cable-level cost reports. In particular, we

choose upper and lower bounds for δFC so that our cost estimates are in line with typical

industry ratios of operating expenses and capital expenses, as discussed in the model fit

Appendix H.

33We conjecture that this due to the entry costs and fixed costs term (−ECm− β
1−βFCm) dominating the

remaining term (continuation value) that pins down δϵ.
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Given a value for δFC , the scale parameter is estimated precisely and the iterations of

our estimation algorithm converge to the same estimate in a short number of iterations.

Estimates of the scale parameter are shown in Table 5 for three different estimators. In each

bootstrap iteration, the NPL and spectral algorithms converge to the same fixed point of

the NPL mapping (regardless of starting values) and, therefore, the corresponding pseudo-

likelihood maximizer is virtually identical (up to the fifth digit). Under the assumption that

δFC = 0.2%, annual fixed costs are in the range of $1 million (the mean is $1.36 million and

the median is $1.1 million) in line with estimates reported in TeleGeography (2022). In the

counterfactual analysis, we proceed with estimates obtained from the NPL algorithm under

the assumption δFC = 0.2%.

Table 5: Parameter Estimates from the Dynamic Model

δFC = 0 δFC = 0.2% δFC = 0.8%

Scale of entry shocks: θϵm = δϵECm

Parameter δϵ
1-PML 0.280 (0.063) 0.284 (0.062) 0.300 (0.059)
NPL Algorithm 0.272 (0.064) 0.277 (0.062) 0.293 (0.059)
Spectral Algorithm 0.272 (0.064) 0.277 (0.062) 0.293 (0.059)

Note: Standard errors, in parenthesis, are obtained by bootstrap (300 replications).

In Appendix H, we evaluate the model fit and provide various test of the model assump-

tions regarding conduct and the independence of markets.

6 Counterfactual Analysis

6.1 The Role of Supplier Diversification

In the first counterfactual exercise, we assess how quantitatively important supplier diversi-

fication is in shaping the evolution of the industry and the total surplus generated.

To implement this counterfactual exercise, we assume buyers cannot diversify their sup-

plier base. That is, in the demand system (Equation (8)), we set nmt to be one regardless

of how many cables operate. Entry of new cables intensifies competition (i.e., raises output

and reduce prices) but does not benefit buyers through increased supplier diversification.

Therefore, the market expansion effect acting through supplier diversification is shut down.

In the context of the demand model of Section 4.1, this is equivalent to setting n equal to

one in the cost-minization problem (Problem (1)). Given this counterfactual demand model,

we solve for the nonstationary MPE of the game using the methodology outlined in Section

5.2.

Table 6 shows the outcomes under the equilibrium played in the data (DGP) and the

counterfactual equilibrium (CF) without diversification. Consumer surplus is computed
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using Equation (5) (scaled by the appropriate market-level heterogeneity dmt, as noted in

footnote 16). We also present the expected disruption costs to the buyers (second term in

Equation (1)) separately in the table, as these costs are not necessarily a transfer to firms.

To compute producer surplus, we convert used bandwidth into purchased bandwidth using

the estimated function f̃(n, γ). Details regarding the estimation of this function are provided

in Appendix C.

When buyers cannot diversify, new cable entry does not expand demand as much as

in the market outcome. We find that consumer surplus under the counterfactual scenario

amounts to 73% of consumer surplus under the DGP: in other words, supplier diversifica-

tion accounts for 27% of consumer surplus created over the sample period. The reduction

in consumer surplus is driven by two changes: first, when buyers cannot diversify, over-

provisioning (e.g., the ratio of purchased-to-used bandwidth Q/B in the model of Section

4.1) increases, raising the direct cost of used bandwidth; second, the expected disruption

costs increase because buyers face higher variance in disruption risk. In particular, the sum

of expected disruption costs over our sample period—where the disruption costs are given

by the second term in Equation (1)—are 4.7 times greater in the counterfactual scenario

than the baseline case. Counterfactual entry probabilities are 12% lower (from a baseline

mean entry probability of 4% in the DGP) because entry no longer expands demand via

increased diversity.34 Producer surplus does not vary significantly, however. This is due to

the fact that although variable profits are lower under the counterfactual equilibrium, entry

costs and private information shocks tend to dominate the continuation value from being

an incumbent. Moreover, the reduction in entry rates is associated with increased market

power and increased over-provisioning from buyers, which counters the drop in profits due

to lower (used bandwidth) demand.

Average total surplus per market over the sample period (in discounted terms) is equal

to US$1.11 billion. Preferences for supplier diversification accounts for 11% of total surplus

created in the industry over the sample period.

6.2 The Efficiency of Entry

In the second counterfactual exercise, we compare the equilibrium level of entry in the

market outcome to the socially optimal level of entry. The objective is to evaluate whether

market forces provide entrants with insufficient or excessive entry motives and to compare

the resulting level of supplier diversity to that chosen by a social planner.

There are two distortions affecting entry decisions. First, entry may be excessive due to

34We focus here on the likelihood of entry rather than the change in the number of cables. The latter may
also reflect the fact that we can simulate forward only starting from a date where price and quantity data
are available (which in many instances occurs after 2005), see Appendix A.
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Table 6: Counterfactual Outcomes Under No Diversification

DGP CF CF/DGP

Mean Median Mean Median Mean Median

Entry rates
Number of cables in 2005-Q1 (data) 1.56 1.00
Number of cables in 2021-Q4 (data) 3.20 3.00
Expected number of cables in 2021-Q4 3.46 2.83 3.38 2.79 0.98 0.99
Expected probability of entry 0.064 0.028 0.046 0.026 0.88 0.94

Welfare (2005-Q1 to 2021-Q4) in millions of US$
Consumer Surplus 684.37 123.25 463.52 85.09 0.73 0.71
Expected disruption costs 30.88 5.34 144.55 26.54 4.76 5.69

Producer Surplus 426.63 305.67 428.34 300.41 1.00 1.00
Total Surplus 1111.00 470.50 891.87 446.30 0.89 0.92
Consumer Surplus / Total Surplus 0.36 0.32 0.31 0.25 0.82 0.83

Note: The first two columns show the data generating process (DGP) outcomes under the observed equilibrium. The next
two columns (CF) present counterfactual outcomes when diversification is removed. The final two columns show the ratio of
counterfactual to DGP outcomes. The “expected probability of entry” is calculated by averaging the expected probability of
entry over all periods, based on equilibrium state transitions and choice probabilities. Expected disruption cost corresponds
to the second term in Equation (1). Consumer surplus is net of disruption costs.

standard business-stealing motives: i.e., when entry reduces incumbents’ output, the private

benefit exceeds the social benefit of entry. Second, entry may be insufficient due to a diversity

effect: i.e., the marginal entrant contributes to surplus by increasing supplier diversity that

they do not (fully) capture as profits because they cannot perfectly price discriminate (Spence

(1976), Mankiw and Whinston (1986)). The supplier diversity and business-stealing effects

thus push in opposite directions. Whether the business-stealing or diversity effect dominates

depends on the shape of the demand curve and the nature of post-entry competition.

We disentangle these two effects in our setting by simulating two counterfactuals. In the

planner’s benchmark, we solve for the optimal dynamic entry path chosen by a social planner

who maximizes total surplus. In the coordination benchmark, we search for the optimal entry

path chosen by a planner who maximizes expected producer surplus. In both benchmarks,

the planner takes post-entry competition as given, and is thus internalizing these externalities

at the margin of entry.35 In the first scenario, both business-stealing and diversity effects are

internalized, whereas in the second scenario, only the business-stealing effect is accounted

for by the planner. We note that the solutions to these dynamic optimization problems are

greatly simplified by our assumption that only one potential entrant has an opportunity to

enter every quarter.36 This assumption reduces the dimensionality of the state space for the

35In the coordination benchmark, the planner does not coordinate output across active firms but only
coordinates their entry decisions while taking the oligopolistic post-entry competition as given. The solution
to this problem is not necessarily to allow only one firm to enter because producer surplus can be non-
monotonic in the number of firms when buyers value diversification.

36This constraint is unlikely to bind in practice because there are no observations where two or more cables
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social planner to be the same as that of a player in the dynamic game.

To perform this decomposition, we denote by TSDGP , TSCB, and TSFB total surplus

under the market outcome, coordination benchmark, and planner benchmark (i.e., first best).

The fraction of the welfare gap explained by diversity effects is calculated as TSFB−TSCB

TSFB−TSDGP
,

and the fraction explained by business-stealing is TSCB−TSDGP

TSFB−TSDGP
.

The results of this counterfactual exercise are shown in Table 7. In the coordination

benchmark, the expected number of cables in 2021 is 23% lower compared to the market

outcome, producer surplus increases by 31% as business-stealing is internalized. However,

consumer surplus decreases by 9%. The expected number of cables at the end of the sample

(2021-Q4) in the DGP is distorted downward by diversity effects and upward by business

stealing: the magnitude of diversity distortions in terms of number of entrants ranges from

54% to 125% of the business-stealing distortion. For the average market, we find that

business-stealing dominates leading to moderately excessive entry rates. Relative to the

market outcome, total surplus under the Planner’s benchmark (first-best) is on average 10%

higher. We find that 53% of this welfare gap is due to diversity effects, whereas 47% is due

to business-stealing.

Heterogeneity Analysis. As a final exercise, we examine heterogeneity in the distortions

described above at the market level. In particular, we identify the market features and

parameters which determine the size of the diversity distortion relative to business-stealing.

First, we regress the change in total surplus (due to each distortion) on various market-

level characteristics. We use (TSFB − TSCB) /TSDGP and (TSCB − TSDGP ) /TSDGP as

the dependent variables measuring the change in welfare explained by diversity effects and

business-stealing, respectively. Figure 4 shows the OLS coefficients from the regression of

these dependent variables on entry costs (ECm), baseline demand level (κm) and cost level

(τm) estimated from the AR(1) processes, mean growth in the exogenous part of demand

(dm,t+1

dmt
), and mean price-cost margin (pmt −mcmt). The latter variable is endogenous, but

we include it as the correlation can still be informative.

As shown in Figure 4, the size of the welfare gap due to business stealing effects is

increasing in entry costs, decreasing in baseline demand, and increasing in the price-cost

margin. These findings are consistent with theoretical predictions (Spence (1976), Mankiw

and Whinston (1986)) which suggest that the welfare loss is proportional to the level of

excess entry costs and profit diversion from incumbents. Business-stealing is more muted

if the market size is large, but is larger if incumbents’ margins are high (the higher the

price-cost margin, the higher is the loss from a reduction in incumbents’ quantities).

The welfare gap due to diversity effects is increasing in the price-cost margin; this is con-

enter a market in the same quarter; this assumption is also imposed in estimation.
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Table 7: Counterfactual Outcomes Under the Planner and Coordination Benchmarks

DGP CF CF/DGP

Mean Median Mean Median Mean Median

Social Planner benchmark
Entry rates
Number of cables in 2005-Q1 (data) 1.56 1.00
Number of cables in 2021-Q4 (data) 3.20 3.00
Expected number of cables in 2021-Q4 3.46 2.83 3.05 2.43 0.86 0.88
Expected probability of entry 0.064 0.028 0.015 0.000 0.273 0.001

Welfare (2005-Q1 to 2021-Q4) in millions of US$
Consumer Surplus 684.37 123.25 670.75 109.07 0.96 0.98
Expected disruption costs 30.88 5.34 32.98 5.28 1.06 1.00

Producer Surplus 426.63 305.67 511.48 380.81 1.23 1.16
Total Surplus 1111.00 470.50 1182.23 541.70 1.10 1.06
Consumer Surplus / Total Surplus 0.36 0.32 0.33 0.28 0.88 0.92

Coordination benchmark
Entry rates
Number of cables in 2005-Q1 (data) 1.56 1.00
Number of cables in 2021-Q4 (data) 3.20 3.00
Expected number of cables in 2021-Q4 3.46 2.83 2.78 2.00 0.77 0.80
Expected probability of entry 0.064 0.028 0.005 0.000 0.146 0.000

Welfare (2005-Q1 to 2021-Q4) in millions of US$
Consumer Surplus 684.37 123.25 602.05 108.83 0.91 0.97
Expected disruption costs 30.88 5.34 47.84 5.24 1.18 1.00

Producer Surplus 426.63 305.67 542.48 402.35 1.31 1.18
Total Surplus 1111.00 470.50 1144.53 526.46 1.08 1.04
Consumer Surplus / Total Surplus 0.36 0.32 0.31 0.26 0.85 0.88

Note: The first two columns correspond to the data generating process (DGP) and show outcomes under the equilibrium
played in the data. The following two columns show counterfactual (CF) outcomes under the social planner and coordination
benchmarks. The last two columns show the ratio of the counterfactual outcomes to DGP outcomes. The variable “expected
probability of entry” is the average over all periods of the expected probability of entry given equilibrium state transitions
and choice probabilities. The expected disruption cost is given by the second term in Equation (1). Consumer surplus is net
of the disruption costs.

sistent with greater welfare gains from additional entry in markets where firms have market

power, which can be correlated with a limited number of suppliers. The size of the welfare

gap is also increasing in baseline demand, since infra-marginal buyers also benefit from entry

via greater diversity. Taken together, these findings suggest that policy interventions to en-

courage entry would best target markets with low entry costs, low baseline costs (τm), high

price-cost margins, and high market size (κm). In such markets, distortions due to diversity

effects will tend to dominate, leading to socially insufficient entry.

Second, we conduct a comparative statics exercise evaluating the sensitivity of the model’s

counterfactual predictions to buyers’ preferences for diversity. To do this, we vary the dis-

ruption cost parameter γ (set to 120 in the baseline estimation) from a value of 40 to 200

(see Appendix C for a derivation of these bounds). For each value of the disruption cost

parameter, which affects the degree of diversification needs, we solve for the market out-
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Figure 4: Correlation Between the Welfare Gaps and Market Characteristics

Entry cost ECm

Demand level κm

Cost level τm

Demand growth 
dm, t+1 dmt

Price−cost margin 
pmt−mcmt

−0.04 0.00 0.04
Coefficient

Welfare gap Business−stealing Diversity

Notes: The figure displays the coefficients from a regression of (TSCB − TSDGP ) /TSDGP (business-stealing)
and (TSFB − TSCB) /TSDGP (diversity) on market characteristics shown on the y-axis. 95% confidence
intervals are represented as horizontal lines. All variables used as regressors are standardized. For the price-
cost margin and demand growth, we take the average of their values in the DGP over all periods.

come, coordination and planner benchmarks, then compute welfare. The relative sizes of

the diversity and business-stealing distortions depend crucially on the nature of demand for

diversity: we find that under the lower value of disruption costs, the majority of the welfare

gap (92%) is due to business-stealing, whereas with the higher disruption costs of 200, 62%

of the welfare gap is due to diversity effects.

The takeaways from these two exercises are that (1) suppliers’ inability to internalize

positive externalities from risk diversification can significantly distort entry decisions, and

(2) substantial heterogeneity exists, even within a single industry, in the magnitude of en-

try distortion caused by supplier diversification. The first exercise shows that factors such

as market size, price-cost margin, and baseline cost levels are statistically significant de-

terminants of the welfare gap caused by diversity effects. The second exercise highlights

that disruption costs have a first-order influence on the size of the distortion. Whether a

market achieves sufficient supplier diversity—and might justify entry subsidies from a social

cost-benefit perspective—depends on market- and industry-specific attributes. Policymakers

addressing these distortions must consider market-specific characteristics and the magnitude

of disruption costs to buyers.

We also note that, while policy interventions would target the entry margin in this un-

regulated industry, these interventions might take different forms in other contexts. For
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instance, in natural monopoly industries such as electricity transmission and distribution,

disruptions can be mitigated by capital investments, such as the maintenance of aging in-

frastructure, which are incentivized by regulated rates and auditing (Lim and Yurukoglu

(2018)). Ensuring efficient levels of reliability is more challenging in that context due to

asymmetric information between the regulator and the firm, compared to our setting where

reliability is supplied via the market mechanism.

7 Conclusion
Supply disruptions and the ensuing diversification sought by buyers are critical features in

many industries. This paper quantitatively assesses their impact on an industry’s dynamic

evolution, focusing on the global internet backbone. To achieve this, we build a demand

model of bandwidth provisioning and diversification under disruptions, coupled with a dy-

namic oligopoly game of entry by cable operators. The model is estimated using novel data

on used bandwidth, bandwidth prices, cable characteristics, and cable disruptions.

We find that supplier diversification accounts for a significant portion of entry rates and

surplus created during the sample period, 2005-2021. Furthermore, we quantify entry bias

arising from entrants’ inability to capture the benefits of diversity. Specifically, when buyers

diversify their supplier base, a marginal entrant increases surplus by enhancing diversity but

does not fully capture this gain in profits. In this industry, distortions due to diversity effects

are significant and comparable in magnitude to distortions from business-stealing.

Our framework is applied to the global internet backbone, an industry marked by frequent

and costly supply disruptions and a strong buyer preference for diverse physical paths. Study-

ing this industry is valuable in its own right, as it provides insights into the infrastructure

and physical connections underpinning the internet, a cornerstone of modern communication

and commerce.

Our model highlights that in industries with supplier disruptions, supplier diversity has

a public good-like quality and may be under-provided by market forces—an under-studied

distortion warranting attention, particularly where disruptions impose significant economic

costs. The proposed empirical framework could also be applied to other industries fac-

ing supply bottlenecks (e.g., energy transportation, essential infrastructure, semiconductor

manufacturing) or to evaluate mergers in such sectors. Understanding the role of these in-

centives in merger analysis and exploring the provision of diversification under monopoly or

multi-cable ownership are promising avenues for future research.
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Online Appendix

A Details of the Market Definition
This section provides details on the markets contained in the TeleGeography datasets that

are used in estimation. As discussed in Section 3.3, we define a market as a country-pair. Our

estimation panel is not balanced; new cables are continually built, connecting new country-

pairs resulting in new markets appearing in the data. This is illustrated in the left panel of

Figure A1.

Figure A1: Cumulative Number of Markets (left) and Cumulative Bandwidth Coverage
(right) in the Estimation Panel

Notes: The left figure shows the cumulative number of distinct country-to-country markets for which both
price and used bandwidth data are available. The right figure shows final-period bandwidth-weighted cumu-
lative coverage in the estimation panel.

However, on a bandwidth-weighted basis, the estimation panel is well balanced, as is

shown in Figure A1 (right panel). The right panel of Figure A1 plots the final-period

bandwidth-weighted cumulative coverage of the estimation panel (final-period bandwidth is

used to account for overall bandwidth growth over the data). It can be seen that beginning

in the fourth quarter of 2007 the panel’s coverage reached 80% of aggregate final-period

bandwidth and thereafter remained substantially complete.

We provide further details on the markets included in our sample in Tables A1 and A2.

Table A1 contains information on the largest 15 markets (by bandwidth) in the estimation

panel, showing the first and last period for which information (on prices and bandwidth

used) is available in the data.

Table A2 shows similar data broken down by region pair. For the sake of brevity, only

the largest three markets in each region pair (by bandwidth) are shown.
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Table A1: Top 15 Markets

First Final
Market Period Period Observations Bandwidth

Germany-United Kingdom 2006-Q2 2021-Q4 63 133,950.7
France-Germany 2006-Q2 2021-Q4 63 131,869.1
Germany-Netherlands 2006-Q2 2021-Q4 63 114,501.2
United Kingdom-United States 2007-Q4 2021-Q4 57 110,773.3
France-United Kingdom 2006-Q2 2021-Q4 63 103,257.7
Netherlands-United Kingdom 2006-Q2 2021-Q4 63 98,091.4
France-Spain 2006-Q2 2021-Q4 63 96,661.1
Japan-United States 2007-Q4 2021-Q4 57 93,189.8
Denmark-United States 2007-Q4 2021-Q4 12 91,767.4
Ireland-United Kingdom 2007-Q4 2021-Q4 57 85,333.5
Spain-United States 2007-Q4 2021-Q4 20 71,005.0
Denmark-Sweden 2005-Q1 2021-Q4 68 61,609.9
Denmark-Germany 2005-Q1 2021-Q4 37 59,898.3
France-United States 2007-Q4 2021-Q4 57 58,693.1
Ireland-United States 2007-Q4 2021-Q4 55 53,448.6

Note: This table presents details on the top 15 markets in the data, in terms of used
bandwidth in the final period. Columns 2 and 3 contain the first and last period each
market appears in our estimation panel. Column 4 contains the number of periods for
each market in the final estimation panel. Column 5 contains the used bandwidth in the
final period in Gbps.

47



Table A2: Top 3 Markets by Region Pair

First Final First Final
Market Period Period Bandwidth Market Period Period Bandwidth

Africa-Africa Europe-Europe
Kenya-South Africa 2018-Q4 2021-Q4 827.4 Germany-U.K. 2006-Q2 2021-Q4 133,950.7
Ghana-Nigeria 2017-Q2 2021-Q4 223.6 France-Germany 2006-Q2 2021-Q4 131,869.1
Angola-South Africa 2019-Q4 2021-Q3 204.4 Germany-Netherlands 2006-Q2 2021-Q4 114,501.2

Africa-Asia Europe-Middle East
Egypt-India 2013-Q4 2015-Q1 23.1 France-U.A.E. 2011-Q4 2021-Q4 3,516.6
India-Kenya 2013-Q4 2019-Q4 11.0 France-Saudi Arabia 2011-Q4 2021-Q4 3,366.5
India-Tanzania 2013-Q4 2015-Q4 0.7 France-Oman 2014-Q4 2021-Q4 2,673.1

Africa-Europe Europe-U.S. & Canada
Egypt-France 2014-Q4 2021-Q4 5,885.6 U.K.-U.S. 2007-Q4 2021-Q4 110,773.3
Nigeria-U.K. 2015-Q2 2021-Q4 2,596.2 Denmark-U.S. 2007-Q4 2021-Q4 91,767.4
France-South Africa 2018-Q4 2021-Q1 1,911.4 Spain-U.S. 2007-Q4 2021-Q4 71,005.0

Africa-Latin America Latin America-Latin America
Angola-Brazil 2019-Q4 2021-Q4 164.0 Argentina-Chile 2010-Q2 2021-Q4 6,546.6

Argentina-Brazil 2010-Q2 2021-Q4 5,957.5
Chile-Peru 2010-Q4 2021-Q4 2,211.2

Africa-Middle East Latin America-U.S. & Canada
Kenya-U.A.E. 2018-Q1 2020-Q3 282.5 Brazil-U.S. 2009-Q4 2021-Q4 45,624.8
Egypt-Oman 2013-Q4 2015-Q1 0.2 Mexico-U.S. 2010-Q2 2021-Q4 29,696.1

Chile-U.S. 2010-Q2 2021-Q4 11,423.4

Asia-Asia Middle East-Middle East
Japan-Singapore 2009-Q1 2021-Q4 32,841.5 Bahrain-U.A.E. 2014-Q1 2021-Q2 361.5
India-Singapore 2010-Q3 2021-Q4 27,004.4 Kuwait-U.A.E. 2014-Q4 2021-Q2 178.3
Indonesia-Singapore 2014-Q2 2021-Q4 24,756.7 Qatar-U.A.E. 2014-Q1 2021-Q2 154.5

Asia-Europe Oceania-Oceania
France-India 2016-Q4 2021-Q4 22,429.3 Australia-New Zealand 2013-Q1 2021-Q4 3,827.7
France-Singapore 2011-Q2 2021-Q4 4,011.1
India-U.K. 2010-Q4 2021-Q4 3,674.8

Asia-Middle East Oceania-U.S. & Canada
Saudi Arabia-Singapore 2012-Q2 2021-Q4 1,074.8 Australia-U.S. 2010-Q4 2021-Q4 12,133.2
Singapore-U.A.E. 2012-Q2 2021-Q4 999.8 New Zealand-U.S. 2013-Q1 2021-Q4 1,313.5
India-U.A.E. 2010-Q4 2021-Q4 567.8

Asia-Oceania U.S. & Canada-U.S. & Canada
Australia-Singapore 2011-Q4 2021-Q4 3590.6 Canada-U.S. 2005-Q4 2021-Q4 32,980.7
Australia-Japan 2011-Q2 2021-Q4 1933.4
Australia-Indonesia 2016-Q1 2018-Q2 5.6

Asia-U.S. & Canada
Japan-U.S. 2007-Q4 2021-Q4 93,189.8
Singapore-U.S. 2009-Q3 2021-Q4 34,663.6
South Korea-U.S. 2012-Q2 2021-Q4 3,774.9

Note: This table presents details on the top 3 markets by region pair, in terms of used bandwidth in the final period. Columns 2
and 3 contain the first and last period each market appears in our estimation panel. Column 4 contains the used bandwidth in the
final period in Gbps.
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B Proofs

Lemma 1. Proof The integral in Equation (3) is continuous and strictly increasing in B
Q
,

converges to 0 for B
Q

close to zero, and equals µ when B
Q

is one. A unique interior solution

exists by the Intermediate Value theorem. The Implicit Function theorem implies that:

∂f̃(n, γ)

∂γ
=

−1

γ2f̃ gn(f̃)
< 0 ,

proving that f̃(n, γ) is decreasing in γ.

Proposition 1. Proof The function h̃(n, γ) can be expressed as:

h̃(n, γ) =
1

f̃(n, γ)
+ γ E

[
max

{
1− 1

f̃(n, γ)

1

n

n∑
i=1

δi, 0

}]

=
1

f̃(n, γ)
+ γ

∫ f̃(n,γ)

0

(
1− u

f̃(n, γ)

)
gn(u)du

=
1

f̃(n, γ)
+ γ

(
Gn(f̃(n, γ))−

1

γf̃(n, γ)

)
= γGn(f̃(n, γ)) ,

(25)

where the third equality is obtained by using the first-order condition (3) at f̃(n, γ). We show

that the sequence Gn(f̃(n, γ)) is decreasing. The first-order condition (3) can be rewritten,

with the change of variables p = Gn(u), as:

1

γ
=

∫ Gn(f̃(n,γ))

0

G−1
n (p)dp . (26)

We distinguish between two possible cases. If f̃(n, γ) ≤ xn, then Gn+1(x) < Gn(x) for all

x < f̃(n, γ). Equivalently, G−1
n (p) < G−1

n+1(p) for all p < Gn(f̃(n, γ)). Because Equation (26)

holds for all n, we have:

1

γ
=

∫ Gn+1(f̃(n+1,γ))

0

G−1
n+1(p)dp =

∫ Gn(f̃(n,γ))

0

G−1
n (p)dp <

∫ Gn(f̃(n,γ))

0

G−1
n+1(p)dp.

The inequality implies that Gn+1(f̃(n+ 1, γ)) < Gn(f̃(n, γ)).

If f̃(n, γ) > xn, then G−1
n (p) > G−1

n+1(p) for all p ≥ Gn(f̃(n, γ)). Note that Equation (26)

can be rewritten as

1

γ
= µ−

∫ 1

f̃(n,γ)

ugn(u)du = µ−
∫ 1

Gn(f̃(n,γ))

G−1
n (p)dp .
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Using a similar argument as in the first case, we can show that:

µ− 1

γ
=

∫ 1

Gn+1(f̃(n+1,γ))

G−1
n+1(p)dp =

∫ 1

Gn(f̃(n,γ))

G−1
n (p)dp >

∫ 1

Gn(f̃(n,γ))

G−1
n+1(p)dp .

The inequality implies that Gn+1(f̃(n + 1, γ)) < Gn(f̃(n, γ)). This proves that h̃(n, γ) is

strictly decreasing in n.

To prove convergence, define the sequence of functions mn(x) =
∫ x

0
G−1

n (p)dp. This

sequence converges point-wise to m(x) = µx. Because mn(x) and m′
n(x) = G−1

n (x) are both

uniformly bounded by one, mn converges to m uniformly over [0, 1] (Arzelà–Ascoli theorem).

In particular,

∀ϵ > 0,∃N, s.t.∀n ≥ N,
∣∣∣mn

(
Gn(f̃(n, γ))

)
−m

(
Gn(f̃(n, γ))

)∣∣∣ < ϵ .

Sincemn

(
Gn(f̃(n, γ))

)
equals 1

γ
for all n, the previous statement implies thatm

(
Gn(f̃(n, γ))

)
(i.e., µGn(f̃(n, γ))) converges to

1
γ
, and hence, h̃(n, γ) = γGn(f̃(n, γ)) converges to

1
µ
.

C Parameterization of the Consumer-Based Bandwidth

Demand Model
We calibrate the distribution of disruption shocks δi using data on cable faults and the

duration of repairs, defined as the duration (in days) between the date the disruption starts

and the date at which repairs are completed. We then compare the predictions of the

bandwidth provisioning problem to the data.

The disruption shock takes the form δi = (1 − Xi) + XiYi, where Xi is a Bernoulli

random variable with parameter pd and Yi ∈ [0, 1] follows a Beta distribution Beta(a1, a2).

We assume that Xi and Yi are independent. That is, a disruption occurs with probability

pd; conditional on a disruption occurring (Xi = 1), the duration of repairs is stochastic: the

random variable Yi ∈ [0, 1] corresponds to uptime (per quarter). For example, conditional

on a disruption occurring, if Yi equals 0.5, the cable is operational for half of a quarter (or

1.5 months).37

We set the per-quarter probability of disruption pd between 5% and 10% to match ag-

gregate figures of 100 to 200 cable disruptions per year, out of a total of 434 cables at the

end of our sample. Conditional on a disruption occurring, we use the number of repair

days available for each cable disruption in our cable fault data to estimate the probability

distribution of uptime Yi. The mean repair duration is 25 days, and the median is 14 days.

Panel (a) of Figure A2 shows a histogram of Yi, constructed using the repair days data.

37The variable Yi equals
91.25−repair days

91.25 . We cap the repair days at 91.25 days (a quarter) for simplicity.
Five cable disruption events (out of 168 in our data) take longer than 91 days to repair.
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We estimate the parameters of the Beta distribution by Maximum Likelihood, and plot the

corresponding density of Yi ∼ Beta(â1, â2) along with the histogram. Under this parame-

terization, the expectation of δi, denoted µ, equals 0.96 if pd = 10% or 0.98 if pd = 5%. The

latter corresponds to a 2% expected downtime.

Recall that the logarithm of used bandwidth can be expressed as a function of the band-

width price and the number of cables as follows (Equation (7))

log(B) =
1

α
log(P ) +

1

α
log
(
h̃(n, γ)

)
. (27)

Panel (b) of Figure A2 plots 1
α
log(h̃(n, γ)), corresponding to the effect of n on log(B) pre-

dicted by the consumer-level demand model for different values of γ, alongside the reduced-

form estimates {α̂n}8n=1 (and confidence bands) from Equations (8).38 The functions f̃(n, γ)

and h̃(n, γ) do not have closed-form expressions, but can be easily simulated given the dis-

tribution of δi. Informed by the mapping between reduced form and structural parameters,

we set 1
α
to the estimated price elasticity (α̂p = −1.36).

The consumer-level demand model predicts an effect of the number of suppliers n on (log)

used bandwidth that is broadly consistent with the reduced form coefficients. In terms of

magnitudes, a value of γ in the range [40, 200] best matches our reduced form estimates. We

verify that (log) purchased bandwidth Q, which is obtained as log(Q) = log(B)−log(f̃(n, γ)),

is also increasing and concave in n.

While it is difficult to obtain precise estimates of the economic costs of cable disruptions

γ, industry reports estimate damages in the same order of magnitude: for example, APEC

(2012) provides simulations of the economic costs of cable disruptions based on estimates of

the contribution of the internet economy to GDP and trade, and reliance on international

bandwidth.39 For the year 2012, they calculate economic costs to Australia on the order of

US$ 4.6 million per Gbps per month disrupted; on the other hand, the average bandwidth

price connecting to Australia in 2012 is US$ 43 thousand per Gbps per month, which results

in estimates of γ on the order of 106.40 We stress that the cost of disruption in our model

may capture other less tangible costs (e.g., reputation, backlog) from the perspective of

the buyer, which are not accounted for by studies using aggregate statistics such as APEC

(2012).

38To make the estimates comparable, when plotting 1
α log

(
h̃(n, γ)

)
as a function of n for different values

of γ, we normalize the value at n = 1 to match our reduced form estimate (α̂1 = 0.195). The reduced-form
coefficients are measured relative to the omitted category (no cables).

39The report and model simulations are available at: https://www.apec.org/publications/2013/02/

economic-impact-of-submarine-cable-disruptions [Accessed: September 23rd, 2024].
40Similar magnitudes of economic damages are computed for other countries: e.g., US$ 601 thousand for

Singapore, US$ 3.8 million for South Korea per Gbps per month disrupted.
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Figure A2: Panel (a) shows the histogram of uptime Yi and the density of a Beta distribution with shape

parameters 1.014 and 0.516 estimated by maximum likelihood. Panel (b) plots 1
α log

(
h̃(n, γ)

)
for different

values of γ, with 1
α set to the estimated price elasticity (α̂p = −1.36) and pd set to 0.10. The solid navy line

corresponds to the coefficient estimates α̂n from the aggregate demand model (Equation (19)), the shaded
area corresponds to the 95% CI.

We perform a cross-validation exercise to assess the predictive performance of this model

by comparing model predictions of purchased bandwidth to the data. While we observe

used bandwidth Bmt at the market level over the timeframe 2005–2021, data on purchased

bandwidth is more limited and only available at the region-pair level and over the timeframe

2010–2021. We compare purchased bandwidth Qrt observed for region-pair r in period t to

the purchased bandwidth predicted by our model. Given used bandwidth Bmt, we estimate

purchased bandwidth for region-pair r as

Q̂rt =
∑
m∈r

Q̂mt =
∑
m∈r

Bmt/f̃(nmt, γ)

where nmt is the number of cables operating in market m in period t. We compute bounds

on Q̂rt using two extreme values for γ (40 and 200). The results are shown in Figure A3

which plots Qrt against Q̂rt (with γ equal to 40 and 200), both in logarithm.

The average ratio of used to purchased bandwidth (Brt/Qrt) in the data is 0.73 and the

median is 0.77. The model predictions for the ratio closely match the data. This cross-

validation exercise provides evidence that the consumer optimization problem and model

parameterization yield reasonable predictions for buyers’ bandwidth purchasing and usage

behavior.
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Figure A3: This figure plots purchased bandwidth Qrt observed in the data for six different region pairs

over 2010–2021, against purchased bandwidth predicted by our model as
∑

m∈r Bmt/f̃(nmt, γ) for γ equal
to 40 and 200. The left side of each horizontal segment corresponds to γ equal 40, the right side corresponds
to γ equal 200.

D Solution Method and Estimation Approaches
Solution Method. The dynamic game is solved by backward induction starting from the

last period in our sample, i.e., t = T , market by market. In market m, denote a given

element of the state space as

Mm,t = (nmt, dmt, hmt) ,

where nmt is the number of cables in operation, dmt is the exogenous demand state, and

hmt is the exogenous cost state. The latter two variables are discretized for tractability and

we provide details about the discretization procedure in Sections 5.3 and 5.4. To account

for market-level unobservables and the non-stationary nature of the industry, the vector of

CCPs and value functions are indexed by the market and the period (in addition to the

state).

We iterate over the following steps.

1. Initialize the vectors of CCPs for each market m, state Mm,t, and period t, denoted Pm,t.

The vector Pm,t is indexed by the state Mm,t and gives the CCP of entry into the market

m in state Mm,t in period t.
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2. For each market m and period t, form the transition matrix from state Mm,t to state

Mm,t+1 conditional on the action played a. This transition matrix is also indexed by time

because CCPs and the transition processes of exogenous states (dmt, hmt) are indexed by

time. Two transition matrices are necessary: for incumbents conditional on staying in the

market, and for potential entrants conditional on entering. Denote the transition matrices

for incumbents and entrants Fi
m,t and Fe

m,t respectively. If a firm plays a terminal action

(that is, a potential entrant stays out) the continuation value is zero, therefore, knowledge

of this transition matrix is not necessary.

3. For each market m and period t, solve for the ex-ante value function of an incumbent.

For period t ≥ T , the ex-ante value function solves the system of equations

Vi
m,T = πm,T − FCm + βFi

m,TV
i
m,T

=
(
I − βFi

m,T

)−1
[πm,T − FCm] ,

(28)

where I is the identity matrix, πm,T is a vector of variable profits in each state and FCm is

a market-specific fixed cost.41 For period t ≤ T − 1, the ex-ante value function is obtained

recursively as

Vi
m,t = πm,t − FCm + βFi

m,tV
i
m,t+1 . (29)

4. Update the conditional choice-specific value function. Let ve
m,t denote a vector collecting

the choice-specific value function from entering in market m in period t. This vector satisfies

the equality

ve
m,t = −ECm + βFe

m,tV
i
m,t+1 . (30)

5. Update the vectors of CCPs as

P
′

m,t =
exp

(
ve
m,t

θϵm

)
1 + exp

(
ve
m,t

θϵm

) . (31)

If the maximum absolute difference between Pm,t and P
′
m,t, across periods t = 1, . . . , T , is less

than the pre-defined tolerance level (10−4), the procedure stops and
(
P

′
m,t

)
t=1,...,T

is saved. If

not, define updated CCPs as a convex combination of old and new CCPs ηPm,t+(1−η)P
′
m,t

for each player i and return to Step 2.

Because markets are independent, we can solve the model for each market separately.

For our counterfactual analysis, we initialize this algorithm at a large number of starting

values and iterate to a fixed point.

Estimation Approach. Given a vector of CCPs and structural parameters in iteration k,

41We do not model exit decisions, therefore, we rule out firm-specific private information shocks for in-
cumbents.
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denoted (P(k),θ(k)), we iterate over the following steps of the NPL algorithm.

1. Update the transition matrix from state Mm,t to state Mm,t+1 conditional on the action

played a. As in the solution method, we store two transition matrices: for incumbents

conditional on staying in the market, and for potential entrants conditional on entering.

Denote the transition matrices for incumbents and entrants F
i,(k+1)
m,t and F

e,(k+1)
m,t respectively.

2. Solve for the ex-ante value function of an incumbent gross of the fixed cost, denoted

Ṽ
i,(k+1)
m,t .42

Ṽ
i,(k+1)
m,T = πm,T + βFi

m,T Ṽ
i,(k+1)
m,T

=
(
I − βF

i,(k+1)
m,T

)−1

πm,T ,
(32)

and

Ṽ
i,(k+1)
m,t = πm,t + βFi

m,tṼ
i,(k+1)
m,t+1 . (33)

3. Estimate the structural parameters θ(k+1) using a pseudo-likelihood estimator where the

probabilities that a potential entrant enters in market m and period t is given by

exp

({
−ECm + βF

e,(k+1)
m,t Ṽ

i,(k+1)
m,t+1 − β

1−β
FCm

}/
θϵm

)
1 + exp

({
−ECm + βF

e,(k+1)
m,t Ṽ

i,(k+1)
m,t+1 − β

1−β
FCm

}/
θϵm

) . (34)

4. If the maximum absolute difference between θ(k) and θ(k+1) and between P
(k)
m,t and P

′
m,t

(based on Equation (34) under θ(k+1)) is less than the tolerance level, stop the procedure. If

not, return to step 1 using P
(k+1)
m,t = P

′
m,t and θ(k+1).

In some cases, the NPL algorithm may fail to converge if the fixed point correspond-

ing to the data generating process is unstable (Pesendorfer and Schmidt-Dengler (2010)).

To address this concern, we implement several alternative estimators: two-step estimators

(1-PML and 1-MD) and the spectral algorithm recently proposed by Aguirregabiria and

Marcoux (2021). The latter estimator does not iterate on the best-response mapping to

attain a fixed-point, rather, it solves for the root of a nonlinear system of equations by

a quasi-Newton method. As a consequence, the spectral approach can find unstable fixed

points that would be unattainable by the NPL algorithm.

Define ϕ(P) ≡ P − Ψ(P, θ̂(P)), where θ̂(P) is the pseudo-likelihood maximizer given

input CCP vector P and Ψ(., .) is the best-response mapping as a function of input CCP

and structural parameters. To find the solution(s) to ϕ(P) = 0, spectral approaches are

42We compute the value function gross of the fixed cost in order to be able to express the probability of
entry as a function of the fixed cost and maximize the pseudo-likelihood. If we were to use Equations (28)
and (29), then FCm would be subsumed in the value function and would not appear as a argument in the
pseudo-likelihood.
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particularly useful because they do not require computing the large-dimensional Jacobian

▽ϕ(P) as would be required in Newton’s method.43 In practice, we replace the updating

step above (step 4, where P(k+1) = Ψ(P(k), θ̂(P(k)))) by

P
(k+1)
m,t = P

(k)
m,t − ζkϕ(P

(k)
m,t) ,

where ζk, the spectral step, equals

ζk =
∆P(k)′∆P(k)

∆P(k)′∆ϕ(P(k))
,

and ∆P(k) = P(k) − P(k−1), ∆ϕ(P(k)) = ϕ(P(k)) − ϕ(P(k−1)). We set the initial value ζ0 to

one.44

E Addressing the Endogeneity of Entry
If firms strategically time entry decisions to coincide with demand shocks that are unobserved

by the econometrician, the estimated effects of the number of cables in Equation (19) may be

biased and may not reflect buyers’ preference for diversification. We address this endogeneity

issue using two distinct approaches.

Instrumental Variables. We use the occurrence of cable disruptions as an exogenous

shifter of entry and subsequent market structure: we find support in the data that markets

hit by cable disruptions experience significantly less entry in the next period, two likely

reasons being that: (1) repairing disruptions requires the same specialized cable ships that

are also used in the laying of new cables; and (2) some cable disruptions are caused by tectonic

and weather events that also hinder the laying of cables. Industry reports such as Swinhoe

(2022b,a) and Dzieza (2024) document the limited and aging fleet of cable ships; as of 2022

there were roughly 60 cable ships in the world, with no newly-built cable ships launching

between 2004 and 2010 and only five such ships launching between 2011 and 2020.45 In the

last few years, cable ships laying new cables were booked at least 24 months in advance and

industry experts expect that the industry may move toward long-term exclusive contracts

(akin to deep water oil rigs).46

Table A3 present the results of this analysis. In columns (1) to (6), we focus on the time-

43Newton’s method updates the CCP as P
(k+1)
m,t = P

(k)
m,t − [▽ϕ(Pm,t)]

−1ϕ(P
(k)
m,t).

44The spectral approach replaces the inverse of the Jacobian matrix [▽ϕ(P)]−1 by ζk. As shown in
Aguirregabiria and Marcoux (2021), 1/ζk approximates a Rayleigh quotient of ▽ϕ(P): it is a weighted
average of the eigenvalues of this matrix.

45For example, when Vietnam experienced five cable disruptions by routine causes in the early part of
2024, repairs lasted 6 months due to constraints in ship availability.

46An example of how the limited capacity of the cable ship fleet binds is the Maple Leaf Fiber cable.
Conceived in 2018 as a cable with an underwater segment connecting Toronto and Kingston (under lake
Ontario) and a terrestrial segment between Kingston and Montreal, the project was amended in 2022 to use
terrestrial cables for both segments (Swinhoe, 2022b).
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frame 2013–2021 and drop earlier years (2005-2013) for which data on cable disruptions is not

available. In all specifications, we control for the logarithm of one plus the number of cables

operating in the market. Column (1) shows results based on an OLS regression. Columns

(2) and (3) show the first and second stages of an IV regression (model IV-1) where only

price endogeneity is addressed. Columns (4) to (6) show the first stages and second stage of

an IV regression (model IV-2) where both price and entry endogeneity are addressed. Cable

entry in period t is instrumented by lagged cable faults (in t− 1). The first stage regression

for the number of cables (Column (5)) shows that the number of cable faults in t − 1 has

a negative and statistically significant effect on the number of cables operating in current

period t, indicative of delays in entry. The estimated effect of the number of cables (column

(6)) on demand equals 0.920 and is similar to the baseline estimate (0.977 in column (3)).

This result alleviates concerns about remaining unobserved demand shocks correlated with

entry decisions.

Difference-in-difference. Alternatively, we address endogeneity concerns around entry

decisions using a difference-in-difference like strategy. In Column (7) (model IV-3), we

conduct the same IV regression as in columns (2) and (3), but at an annual level from

2005 to 2021.47 We control for region-year and market fixed effects, assuming common

demand growth rates across markets within the same region pair (e.g., Trans-Atlantic, Trans-

Pacific, Europe-Asia), and identify the effect of entry on demand from growth rate differences

between markets in the same region pair. Despite the smaller sample size (one-fourth of the

full quarterly sample), the estimated price elasticity and the effect of the number of cables are

comparable to other specifications. We also experimented with specifications that include the

number of cables as categorical variables as in Equation (19), and found consistent results.

F Extensions

F.1 Time-to-build

In this section, we extend the industry model to account for the fact that cables typically take

more than one period (3 months) to build. A complete specification includes two features:

a function mapping cable and market characteristics (e.g., geography, cable length) to time-

to-build and a modification of the state space to track cables under construction and their

expected completion time. While the latter is conceptually simple, it significantly increases

the state space size, complicating empirical implementation. For example, with a two-

year time-to-build, the entry probability for a cable in a quarter depends on how many

cables began construction in the past seven quarters, adding seven dimensions. This full

47We omit the first-stage regression for price in model IV-3, as the estimated effects are similar to those
reported in Column (2).
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Table A3: Robustness Checks: Used Bandwidth Demand

OLS IV-1 IV-2 IV-3

(1) (2) (3) (4) (5) (6) (7)
1st-Stage: Price 2nd-Stage 1st-Stage: Price 1st-Stage: Cables 2nd-Stage 2nd-Stage

Bandwidth Price (10G, log) -0.129 -1.309 -1.207 -1.373
(0.0583) (0.310) (0.289) (0.725)

Number of undersea cables (log) 1.293 -0.259 0.977 0.920 0.854
(0.307) (0.170) (0.359) (0.466) (0.318)

Demand factors
Fixed Broadband Subscriptions (log) 0.251 0.126 0.413 0.142 -0.0581 0.395 0.417

(0.113) (0.0704) (0.140) (0.0687) (0.0283) (0.135) (0.147)
GDP (log) 1.241 0.206 1.497 0.174 0.0898 1.480 1.336

(0.397) (0.181) (0.408) (0.172) (0.0552) (0.404) (0.300)
Aggregate trade flow (log) -0.0179 0.0201 0.00541 0.0203 -0.00685 0.00234 0.00333

(0.0439) (0.0279) (0.0661) (0.0286) (0.00437) (0.0650) (0.0781)
Number of data/cloud centers (log) 0.123 -0.00400 0.129 0.000127 -0.0211 0.126 0.225

(0.0903) (0.0829) (0.142) (0.0825) (0.00658) (0.137) (0.134)
Electricity price (log) 0.0780 0.0783 -0.0101

(0.0250) (0.0251) (0.00538)
% change in Electricity price -0.248 -0.249 0.0000245

(0.0376) (0.0377) (0.00735)
Cable faults in t− 1 (log) -0.0332 -0.00812

(0.0182) (0.00336)
Country Pair FEs Yes Yes Yes Yes Yes Yes Yes
Region Pair × Year FEs Yes Yes Yes Yes Yes Yes Yes

Weak Identification test 24.03 12.20 4.194
Endogeneity test (p-value) 32.2 (0) 29.4 (0) 4.10 (0.043)
R2 0.98 0.96 0.97 0.96
Adjusted R2 0.98 0.96 0.96 0.94
Observations 2673 2676 2676 2676 2676 2676 1016

Note: In columns (1) to (6), the unit of observation is a country pair by quarter. In columns (7), the unit of observation is a country pair by year. Standard
errors are clustered at the country pair level. Distance corresponds to the bilateral distances between countries, calculated as a weighted arithmetic average
of the geodesic distances between the main cities in these countries, where population weights are used. For unilateral variables (GDP, fixed broadband
subscriptions, data centers, electricity prices), we restrict the coefficient to be the same for both countries in a pair.
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specification is beyond the scope of this paper.

Instead, we use a simplified characterization that captures the core economics without

overwhelming estimation. Each new cable entrant joins the pool of cables under construc-

tion, transitioning to market competition at a constant, exogenous, market-specific rate,

ζm. Thus, potential entrants only need to track the number of cables under construction,

emt. The expected number of competitors completing construction next period is ζmemt

(from a binomial distribution B(emt, ζm)), and a new entrant expects to wait 1/ζm periods

to complete construction and begin operations.

In this setting, the only part of the industry model that needs to be modified are the

dynamics. The bandwidth demand model, the static competition game, and per-period

profits are unchanged, as are the transitions for the demand and cost states dmt and hmt.

First, the industry state becomes

Mmt = (nmt, emt, dmt, hmt) , (35)

where the additional component emt represents the number of under-construction cables in

market m in period t. We set ζm such that the expected wait time under construction is 2

years

Second, while the profit Equation (9) is unchanged, we note that entry costs ECmt are

paid in the period that the cable enters construction, and variable profits V P (Mt) are zero

until construction is completed.

Third, the choice-specific value function for the potential entrant then becomes

vαi,t(ait,Mt) =

{
−ECmt + β Et

[
V α,e
i,t+1 (Mt+1)

]
if ait = 1

0 if ait = 0
, (36)

where the (next-period) value function for an under-construction cable V α,e
i,t+1 is

V α,e
i,t+1 (Mt+1) = ζmβ Et+1

[
V α
i,t+2 (Mt+2)

]
+ (1− ζm)β Et+1

[
V α,e
i,t+2 (Mt+2)

]
, (37)

and V α
i,t+2 is the value function of an incumbent cable operator. The estimates of δϵ remain

qualitatively similar to the baseline, although their magnitude is smaller reflecting the fact

that the continuation value from entering (Equation (36)) is lower with time-to-build.

F.2 Exogenous Cable Retirement

As in the previous section, we can introduce an alternative extension to the dynamic game:

the retirement of cables after a finite time horizon. This addition to the model brings it

closer to what is likely to be the long-run equilibrium in the industry (though as discussed in

Section 3, not the years covered in our data). Industry consensus is that cables have roughly

a 25 year lifespan (this is the length of a typical FCC license for a cable landing in the US),
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though some cables have been in service for longer and have received regulatory extensions.

As in Section F.1, fully specifying cable retirement leads to a curse of dimensionality. For

example, assuming cables retire after 25 years, the value of entering a market depends on

the age distribution of incumbent cables. A market with 1-, 5-, and 7-year-old incumbents

differs from one with 22-, 23-, and 24-year-old incumbents. Thus, the value function would

depend on both the number and age distribution of incumbents.

To maintain tractability, we adopt a simplified retirement model. Each cable faces an

exogenous and constant retirement probability, χ, per period.48 This implies an expected

lifespan of 1/χ periods. Retirement is a terminal state, with a retired cable replaced by a

new potential entrant.

Under this assumption, the model described in Section 4 can be used with a few minor

modifications. The dynamic state remains

Mmt = (nmt, dmt, hmt) , (38)

and the introduction of the exogenous exit rate χ alters the expectation of future competition,

as (without entry) Et [nt+1] = (1− χ)nt.
49 The choice-specific value function for incumbent

firms becomes:

vαi,t(ait,Mt) =

{
πi(1,Mt) + β(1− χ)Et

[
V α
i,t+1 (Mt+1, ϵi,t+1)

]
+ βχEVmt if ait = 1

πi(0,Mt) if ait = 0
,

(39)

where it can be seen that even if an incumbent chooses to remain active (ait = 1), they will

exogenously exit and receive EVmt (which is normalized to zero) with probability χ. We set

χ so that the expected lifespan of a cable is 25 years. This specification does not significantly

change the estimates of δϵ relative to the baseline (e.g., the 1-PML estimate δ̂ϵ equals 0.245

under δFC = 0.2%).

F.3 Asymmetries in Marginal Costs

In this section, we allow for heterogeneity in marginal costs across cables with differing

vintages (i.e. built at different times). We consider a setup with J different vintages.

Suppressing the market and time subscripts for legibility, the number of incumbent cables

belonging to vintage j is denoted nj, with n =
∑

J nj. The marginal costs of bandwidth

for each type are likewise denoted cj; we consider a type-symmetric equilibrium of the static

Cournot game and denote the (per-firm) quantity produced by firms of type j by qj, with

the market-period identity Q =
∑

j njqj.

48While the exit probability could vary by market (χm), limited exit events in our data prevent empirical
estimation of market-specific probabilities.

49The state space is larger under this extension because nt can potentially decrease, whereas under the
baseline model without exit, nt is weakly increasing over time.
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A firm of type j chooses the optimal amount of bandwidth to supply by satisfying the

first-order condition (omitting the market and time subscripts)

p− cj + qj
∂p

∂qj
= 0 ,

which can be rewritten as

p− cj
p

= −qj
Q

Q

p

∂p

∂qj
= −qj

Q

1

ϵ
,

where ε is the price elasticity of demand. Summing over all firms yields

J∑
j=1

nj

(
p− cj

p

)
= −1

ϵ
, (40)

which can be rearranged to express equilibrium prices as a function of the number of firms

and marginal costs by type:

p =
1

n+ ε−1

J∑
j=1

njcj . (41)

Noting that p, nj, and ε are either observed in the data or estimated objects, one can

then recover the marginal costs by firm type {cj}j∈J by exploiting the cross-sectional and

time-series variation in the vintage distribution of incumbent cables.

In practice, we set J to 2 and assign cables to vintages with the following cutoff

j(i) =

{
1 if ti ≤ t̃

2 if ti > t̃
,

where ti is the period cable i entered service, and t̃ is a cut-off period. We assume that

marginal costs are the sum of market-specific δm, period-specific δt, and vintage-specific

fixed effects δ̃j, for j ∈ {1, 2}. This allows markets with different physical characteristics

(e.g. distance, propensity for cable faults) to have different marginal costs while restricting

the within-market cost difference between different vintages of cables to be common across

all markets. Kalouptsidi (2014) uses a similar approach for ship ages. We estimate the

following equation via ordinary least squares (denoting the error term by νmt):

pmt

(
nmt + ϵ−1

nmt

)
= δm + δt +

n1,mt

nmt

δ̃1 +
n2,mt

nmt

δ̃2 + νmt . (42)

Table A4 shows the estimation results for different choices of the cutoff quarter t̃ (e.g.,

2010 corresponds to 2009-Q4). We do not find evidence of significant heterogeneity in costs

across cables of different vintages, once we control for market and period fixed effects. This

is related to the discussion in Section 5.4 suggesting that many technological upgrades (that
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affect the marginal cost of using current bandwidth or lighting additional bandwidth) can

be installed on equipment at the landing stations and, therefore, benefit incumbent cables

as well as new entrants.50

Table A4: Heterogeneity in Marginal Costs

Dependent variable: pmt

(
nmt+ϵ−1

nmt

)
t̃ = 2005 t̃ = 2010 t̃ = 2015

n1,mt/nmt 13378.0 13443.2 12761.0
(2403.8) (2324.4) (2235.4)

n2,mt/nmt 12849.2 12600.8 14379.9
(3495.7) (3559.8) (3879.8)

Market FE Yes Yes Yes
Time FE Yes Yes Yes

R2 0.776 0.776 0.776
Adjusted R2 0.763 0.763 0.763
Within R2 0.009 0.009 0.009
Observations 4,777 4,777 4,777

Note: The unit of observation is the market (country
pair) by quarter. Standard errors (in parenthesis) are
clustered at the market level. The depend variable is ex-
pressed in $US.

F.4 Time-varying Investment Costs

To more accurately capture technological changes affecting investment costs, we allow entry

costs (ECmt) to vary over time. Using cable construction cost data (available for 47% of

cables), we predict entry costs for all markets, adding a time trend to account for decreasing

costs. Including the time trend slightly improves the fit of the construction cost regression

(R2 increases from 0.76 to 0.83), and entry costs decline modestly by about 1.8% annually

over the sample period.

50Fiber-optic transmission system upgrades are technologies and methods used to increase the capacity and
improve the performance of existing fiber-optic transmission systems. Examples include Wavelength division
multiplexing, a technique that allows multiple wavelengths to be transmitted over a single fiber-optic cable
at the same time; Optical amplifiers, devices that boost the strength of the light signals that are transmitted
over a fiber-optic cable; Polarization-multiplexing, a technique used to transmit two different data streams
over a single fiber using different orientations of light waves (or polarization); Space-division multiplexing,
a technology used to increase the capacity of the cable by using multiple cores within a single optical fiber.
These techniques are generally considered to be relatively low-cost as they do not involve significant capital
investments. Software-defined networking can be used to manage the traffic on the cable by providing a
centralized control plane that can make decisions about how to route traffic based on real-time information
about the network’s state. This allows for greater flexibility in managing the network and can enable more
efficient use of network resources.
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The model is estimated with time-varying entry costs ECmt, while maintaining our as-

sumption that fixed costs are proportional to the level of entry costs FCmt = δFCECmt. We

find that our key estimates for the dynamic parameters remain quantitatively similar to our

original findings: e.g., the 1-PML estimate δ̂ϵ equals 0.268 under δFC = 0.2%. The results

of the counterfactual exercise under these more flexible entry costs align with our baseline

predictions. Notably, supplier diversification drives an important share of investment in new

cables. Because entry costs are decreasing over time, the welfare cost from excess entry is

reduced, leading to a smaller relative magnitude of business-stealing to diversity distortions.

Overall, these results suggest that the core economic mechanisms and insights of our analysis

are robust to allowing for more flexible cost dynamics.

G Determinants of Marginal Costs
We investigate how marginal costs vary with cable characteristics and other cost shifters.

The following specification for the marginal cost function is used

log(mcmt) = γ0Wmt + γq log(qmt) + ηm + ηr(m)t + ωmt , (43)

where Wmt are exogenous cost shifters, qmt is the quantity supplied by a given firm (or

“purchased” bandwidth), ηm and ηr(m)t are market fixed effects and region by time fixed

effects, and ωmt are unobserved cost shocks at the market-period level. Purchased bandwidth

per firm qmt is equal to Qmt/nmt, where Qmt is the total purchased bandwidth derived from

the observed used bandwidth Bmt and the used-to-purchased bandwidth ratio f̃(nmt, γ) with

γ set to 120 (see Appendix C).

This specification allows marginal costs to depend on quantity to capture potential

economies of scale. We estimate this specification by OLS and show the results in Ta-

ble A5. As expected, we find a positive correlation between marginal costs and electricity

prices, cable length, and the number of (contemporaneous) cable faults. In specifications (5)

and (6), marginal costs are also decreasing in the amount of bandwidth supplied by a given

cable, suggesting the presence of economies of scale. However, this effect is not robust to the

inclusion of market-level fixed effects (specification (7)).51

H Model Fit and Assumptions
In this section, we discuss our modeling assumptions concerning the process of demand and

cost states, the conduct model, and the independence of markets. We also examine the

plausibility of our cost estimates and the fit of the model by comparing predictions of the

model to the data.

51Because qmt may be correlated with the unobserved cost shock, we also run specification (7) instrument-
ing qmt with demand-side shifters. The results remain quantitatively similar.
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Table A5: Determinants of Marginal Costs

Dependent variable: Marginal cost
(1) (2) (3) (4) (5) (6) (7)

Purchased bandwidth -0.386 -0.373 -0.137 -0.007
(0.008) (0.007) (0.005) (0.015)

Electricity Price 0.535 0.255 0.086 0.194
(0.025) (0.021) (0.030) (0.036)

% Change in Electricity Price -0.234 -0.202 -0.159 -0.706
(0.072) (0.058) (0.100) (0.095)

Cable length 0.588 0.556 -0.035
(0.017) (0.015) (0.017)

Number of cable faults 0.127 -0.039 -0.002 0.009
(0.034) (0.024) (0.014) (0.013)

Region Pair FE No No No No No Yes No
Time FE No No No No No Yes No
Region Pair × Time FE No No No No No No Yes
Market FE No No No No No No Yes

R2 0.348 0.166 0.196 0.004 0.606 0.850 0.976
Adjusted R2 0.348 0.165 0.196 0.003 0.606 0.847 0.969
Within R2 0.112 0.029
Observations 4,777 4,493 4,777 3,714 3,430 3,430 3,430

Note: The unit of observation is the market (country pair) by quarter. All variables are in log (except change
in electricity prices and number of cable faults). The number of cable faults is only available starting in 2013.
Purchased bandwidth corresponds to the amount supplied by a single firm. Cable length is averaged over all
cables operating in a given market.

Transitions of Aggregate States. First, we consider the estimated transition processes of

the demand and cost states (dmt, hmt). These constitute important inputs into the dynamic

game. We use the fitted AR(1) processes to simulate these two state variables forward and

compare simulation results to the realization of the states in the data. Figure A4 shows the

results for the market “United Kingdom-United States.” The left panel shows the demand

state dmt, and the right panel shows the cost state hmt in the data, along with 95% confidence

intervals from our simulations (dotted lines) and the median simulated value (dashed line).52

We show similar simulation exercises for a subsample of markets in Figures A9 and A10 of

Appendix I.

Overall, the estimated transition processes capture the time series variation and the

heterogeneity across markets well. For the demand state dmt, we find a positive trend for some

markets (e.g., exp(dmt) increased seven-fold over the sample period for the market France–

UK), while in other markets, decreasing prices (Pmt) and, to a lesser extent, increasing

diversity (nmt) explain most of the rise in Bmt, leading to more muted trend in the exogenous

52The last period in the data is 2021-Q4. For the simulations, we iterated forward until 2025.
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Figure A4: Demand State and Cost State Over Time for the Market United Kingdom-United
States
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Notes: The figures show the estimated demand dmt and cost states hmt over time (solid lines). To demon-
strate the fit of our estimated transition processes, the dotted lines give the 95% confidence interval from
simulations using the transition processes. The dashed line shows the median simulated value.

part of demand (e.g., Japan–US).53

Magnitude of Cost Estimates. Second, we compare the magnitude of our cost estimates

to industry reports and cable financial investment plans (Reverdy and Skenderoski (2015),

Seixas (2015)). These reports divide costs into capital expenditures (CAPEX), payable to

manufacturers and installation suppliers, and operational expenditures (OPEX), incurred

annually over the cable’s lifespan. OPEX to CAPEX ratios in these reports range from 4%

to 7% depending on system size and characteristics. For comparison, we calculate the ratio

of annual costs (variable and fixed) to entry costs. Assuming δFC = 0.2%, the average ratio

is 8%, with a median of 3%. For δFC = 0.8%, the mean ratio is 10%, and the median is

5%.54 Overall, our cost estimates align with the magnitudes in industry reports.

Model Fit. Third, given our structural parameter estimates, we solve for the model equilib-

rium and compare the model predictions to the actual data. This is a useful way of evaluating

the assumptions embedded in the model, in particular, those concerning information, timing,

53Another potential explanation for the stability of dmt in some markets is the growth in content delivery
networks (CDNs) over our sample period. CDNs are networks of geographically distributed data centers
designed to enhance the delivery of web content by strategically placing copies of data in multiple server
locations around the world. In this sense, CDNs may reduce the reliance on data transport via undersea
cables by substituting local storage for transport. In our demand specification, the growth in CDNs is
captured by the region-time fixed effects γr(m)t.

54Outlier markets exist where this ratio exceeds one. For instance, geographically close markets like
Denmark-Sweden or Indonesia-Singapore have low entry costs due to short cables but high variable costs
due to heavy bandwidth traffic.
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functional forms, etc. The equilibrium CCP (solved for) are used to simulate the industry

forward from the initial industry state and predict the expected number of cables in the

last period of the sample. Figure A5 shows the number of cables in the last period in the

data against the (simulated) expected number of cables predicted by the equilibrium of the

dynamic game. We find that the model performs well, predicting slightly too much entry

into markets that have only one cable in the data, but otherwise matching the number and

distribution of cables very closely.

Figure A5: Model Fit for the Number of Cables in the Last Period
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Notes: This figure provides an illustration of how the dynamic model matches the data by plotting the
number of cables in the data (horizontal axis) against the simulated number of cables (vertical axis) in the
last period for each market. The model fit is good, with a slight tendency to over-predict entry into those
markets where only one cable is present in the data.

Testing Conduct. Fourth, we test the conduct assumption (symmetric Cournot) using the

approach introduced in Pakes (2017).55 We leverage the dual facts that one can obtain an

independent estimate of the markup from the demand parameters, and that our conduct

assumption implies, via the first-order condition, that this markup has a coefficient of one

in the quantity-setting equation. Rewriting firms’ first-order condition (Equation (22))

pmt = mcmt −
∂pmt

∂qimt

qimt = γ0Wmt + ωmt −
∂pmt

∂qimt

qimt , (44)

where Wmt are exogenous cost factors (as in Table A5), ωmt are unobserved cost shocks, and

− ∂pmt

∂qimt
qimt is the markup. The latter variable can be calculated directly using the demand

estimates. Note that this variable is endogenous as it is a function of both unobserved

55Due to limitations in the data, we cannot use more involved approaches (e.g., non-nested testing, model
selection): in particular, without cable-level market shares, it is difficult to obtain price elasticities under a
differentiated Bertrand assumption.
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Table A6: Fit of Equilibrium Quantity-Setting Equation

Dependent variable: Price
Estimate S.E.

Markup 1.358 (0.238)
Electricity Price 170.119 (69.520)
% Change in Electricity Price -415.521 (1172.760)
Number of cable faults 167.727 (422.788)
Cable length -0.057 (0.085)

R2 0.756
Adjusted R2 0.755
Observations 2731

Notes: The unit of observation is the market (country pair) by quarter.
Standard errors are clustered at the market level and shown in paren-
thesis. All variables are in level. Cable length is averaged over all cables
operating in a given market.

demand and cost shocks. The test is implemented as follows: (1) use the demand estimates

to construct the markup term − ∂pmt

∂qimt
qimt, (2) regress prices on observed cost factors and the

markup, where the markup is instrumented using exogenous demand shifters (in practice we

use GDP, cloud/data centers, and broadband subscriptions), (3) test statistically whether the

estimated coefficient for the markup term is equal to one. The regression results are shown

in Table A6. The fit of the regression is high (R2 = 0.76). The markup coefficient is 1.36 (se

= 0.24), and we cannot reject the null hypothesis of equality to one (the p−value is 0.14).

While this result does not constitute conclusive evidence in favor of our conduct assumption,

it is reassuring that the data is not at odds with the Nash in quantities assumption.

Independent Markets. Finally, we discuss the assumption of independent markets. In the

industry model, cables in each market are assumed to play a separate Markov Perfect equilib-

rium, unaffected by neighboring markets. One concern is that demand might be correlated

across neighboring markets. This is mitigated by controlling for market-level unobserved

heterogeneity and regional-time trends in demand estimation. We allow for macroeconomic

shocks at the region-pair level that simultaneously shift demand for neighboring markets

(e.g., U.S.-U.K., U.S.-France, U.S.-Ireland).

Another concern is that demand in one market might be partially carried via indirect

paths through a third country.56 Since we observe only aggregate bandwidth flows between

country pairs and not exact paths, we cannot directly verify this assumption. Industry ex-

perts confirm that data on the exact routing of bandwidth would be extremely difficult if not

56This issue also arises in airline industry studies when defining product markets. Many studies filter
markets to select homogeneous itineraries where most trips are non-connecting, nonstop trips.
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Table A7: Test of Market Independence

Dependent variable: Log Used Bandwidth
Estimate S.E.

Lag of Log Used Bandwidth 0.958 (0.003)
Focal Market Cable Count 0.010 (0.003)
Neighboring Country Cable Count -0.000 (0.003)

R2 0.976
Adjusted R2 0.975
Observations 7535

Notes: The unit of observation is the market (country pair) by quarter, and the regression
includes region-pair by year fixed effects. Standard errors are shown in parentheses.

impossible to compile. However, we provide suggestive evidence supporting this assumption.

Specifically, we examine the correlation between bandwidth growth in a focal market and

the number of cables in both the focal market and neighboring markets. We expect a pos-

itive correlation between the number of cables and bandwidth growth in the focal market.

Under the independence assumption, the number of cables in neighboring markets should

not correlate with bandwidth growth in the focal market, which our findings support.

To test this, we identify for each focal market the largest country to which it is connected,

termed the ”neighboring” country. ”Largest” is defined by total bandwidth connected to the

country in 2021. For instance, for U.S.-France, the neighboring country is the UK. We regress

bandwidth growth in the focal market on (1) the number of cables in the focal market and

(2) the number of cables connecting the focal market countries to their neighboring country.

The results are reported in Table A7.57

Second, we compare the potential capacity (theoretical design capacity at maximum

utilization, available for a subset of cables in 2021) in a focal market to the used bandwidth.

On average, potential capacity is four times larger than bandwidth demand per market,

consistent with aggregate figures in Table 1. This indicates direct paths are not capacity-

constrained in serving demand.58

I Supplementary Tables and Figures

57This analysis uses a larger sample size than the main text, as it requires only data on bandwidth and
number of cables, not bandwidth prices.

58Transiting through a third country raises costs due to IP transit fees (akin to tolls) paid to the provider
transmitting the data. Direct paths via undersea cables, if available, are more cost-efficient.
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Table A8: Descriptive Statistics on Cable Faults

Year Cables Faults Propensity (%)

2013 301 7 2.3
2014 316 8 2.5
2015 325 7 2.2
2016 341 7 2.1
2017 356 24 6.7
2018 374 17 4.5
2019 397 15 3.8
2020 418 42 10.0
2021 435 27 6.2
2022 459 14 3.1

Notes: Columns 2 and 3 show the number of ac-
tive cables and faults reported each year. Column 4
shows the annual propensity for a cable to suffer a
fault (in percentage terms).

Table A9: Transition Process for the Demand State dmt

(1) (2) (3)

Demand state in t− 1 0.928 0.928
(0.00565) (0.00571)

Time trend 0.0278 0.000426
(0.00306) (0.00117)

Market-level Intercept Yes Yes Yes

R2 0.89 0.98 0.98
Adjusted R2 0.89 0.98 0.98
Observations 4644 4644 4644
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Figure A7: Cables

Notes: The left panel shows the relative frequency of different numbers of cable faults by region-quarter.
The right panel shows the number of cables connecting country pairs as of 2021.

70



0
50

00
0

10
00

00
15

00
00

U
se

d 
Ba

nd
w

ith
 (G

bp
s)

2005 2010 2015 2020 2025
Year

Australia-United States Brazil-United States
France-United Kingdom Germany-United Kingdom
Japan-United States Singapore-United Kingdom
Singapore-United States United Kingdom-United States

(a) Used bandwidth Qmt in level

1
10

10
2

10
3

10
4

10
5

U
se

d 
Ba

nd
w

ith
 (G

bp
s)

2005 2010 2015 2020 2025
Year

Australia-United States Brazil-United States
France-United Kingdom Germany-United Kingdom
Japan-United States Singapore-United Kingdom
Singapore-United States United Kingdom-United States

(b) Used bandwidth Qmt in log scale

10
6

10
7

10
8

10
9

Ag
gr

eg
at

e 
D

em
an

d 
St

at
e

2005 2010 2015 2020 2025
Year

Australia-United States Brazil-United States
France-United Kingdom Germany-United Kingdom
Japan-United States Singapore-United Kingdom
Singapore-United States United Kingdom-United States

(c) Demand state dmt (Gbps, log scale)

Figure A8: Used Bandwidth and Demand State Over Time for a Sample of Markets
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Figure A9: Demand State Over Time for a Sample of Markets
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Notes: The figure shows the evolution of dmt over time for a sample of markets (solid line). The
dotted lines give the 95% confidence interval from simulations using the transition processes. The
dashed line shows the median simulated value.
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Figure A10: Cost State Over Time for a Sample of Markets
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Notes: The figure shows the evolution of hmt over time for a sample of markets (solid line). The
dotted lines give the 95% confidence interval from simulations using the transition processes. The
dashed line shows the median simulated value.
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Figure A11: Cable Construction Costs and Cable Length in Level (left) and Logarithm (right).
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