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Abstract

If bidders are better informed than the seller about a common component of auction

heterogeneity, the seller can allocate more efficiently by keeping her reserve price secret

and revising it using submitted bids. We build a model of a first-price auction under

unobserved auction heterogeneity—imperfectly observed by the seller—that captures

this rationale and derive conditions for identification. An application to French timber

auctions, where such revisions are widely used, shows that having perfect information

about unobserved auction heterogeneity would increase surplus by 5.22%. Combining

a secret reserve price with learning from submitted bids reduces this surplus gap by up

to 84%.
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1 Introduction

Since the seminal work of Myerson (1981) and Riley and Samuelson (1981), the theoretical

auction literature has focused on the optimal choice of a public reserve price, ignoring the

empirical regularity that reserve prices are often kept secret. For instance, secret reserve

prices are employed in auctions for fine art and wine (Ashenfelter (1989)), online auctions

(Bajari and Hortaçsu (2003), Hossain (2008)), and auctions of natural resources such as oil

or timber (Hendricks et al. (1989), Elyakime et al. (1997)).1 The prevalence of secret reserve

prices in real-world markets is at odds with insights from classical auction theory (e.g., in

the first-price format with independent private values) suggesting that secret reserve prices

are neither efficient nor optimal. This paper proposes a novel theoretical explanation for

the use of secret reserve prices—the potential for bids to convey valuable information to

the seller—and uses the French timber industry as an empirical application supporting this

rationale.

If bidders are better informed than the seller about the underlying heterogeneity of the

auctioned item, the seller can allocate more efficiently by keeping her reserve price secret and

adjusting it after bids are submitted. Indeed, bids convey useful information about what

the seller’s reservation value should be. By contrast, when committing to a public reserve

price, the seller loses the option value of learning from the bids: the uninformed reserve price

may be higher than the highest bidder’s valuation leading to no sale, even when an informed

seller would have preferred to sell. The literature on strategic bid skewing provides strong

evidence that bidders often possess more precise information about the ex-post realization of

quantities in timber auctions (Athey and Levin (2001)) and in procurement of construction

projects (Luo and Takahashi (2019), Bolotnyy and Vasserman (2019)) or information about

future adaptation costs (Bajari et al. (2014)).

The main contribution of this paper is to provide a rationale for the use of secret rather

than public reserve prices in environments where the auctioneer may value efficiency (i.e.,

government agencies) and faces some uncertainty about their reservation value.2 Bids can

then be used to refine the auctioneer’s appraisal. In this sense, our explanation complements

other rationales proposed in the literature. Methodologically, we emphasize the role of

1Other examples include the markets for used cars, real estate, and highway construction in the U.S.
Among its best practices for procurement of public works, the OECD recommends not publishing reserve
prices (OECD (2009)).

2Whereas our main application focuses on efficient auctions, the framework can be used to study optimal
auctions where the seller is uncertain about their reservation value. Efficiency may also be of interest to
private firms such as two-sided platforms. Platforms need to attract both buyers and sellers and, therefore,
have an incentive to design auctions that match buyers with the most relevant seller (rather than simply the
seller with the highest willingness to pay), as in Gomes (2014). We thank a referee for pointing this out.
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unobserved auction heterogeneity that is imperfectly observed by the auctioneer and provide

new identification results in the context of first-price auctions with secret reserve prices.3

Our approach is guided by two important features of our empirical setting, the French

timber industry. First, in timber auctions, the Public Forest Service (Office National des

Forêts, ONF) sets an ex-ante secret reserve price which can be revised down if no bid is above

it: around 40% of auctioned tracts are sold at a bid under the ex-ante secret reserve price.

This feature cannot be accounted for by previous rationales for secret reserve prices.4 Dis-

cussions with ONF officers indicate that revisions are based on the distribution of submitted

bids and occur, in particular, if bids suggest that the initial appraisal value overestimated

the true unobserved heterogeneity of the tract.

Second, bidders possess more precise information than the ONF about tract heterogene-

ity. Tracts differ with respect to timber volumes, composition, location, harvesting condi-

tions, etc. In advance of each sale, the ONF collects tract characteristics and shares them

with prospective bidders via a sale booklet. Due to the large number of tracts surveyed and

the ONF’s limited resources, tract characteristics (such as volumes or quality) reported in

the booklet are purely indicative and often imprecise (the ONF has no contractual obligation

vis-a-vis reported volumes).5 Bidders, therefore, have strong incentives to conduct their own

“cruises” since the winner pays a lump-sum (or fixed-price) amount irrespective of actual

timber volumes or quality.

We use data on ten sales of standing timber by the ONF that took place in the Grand Est

region in the Fall of 2003.6 We observe information on 2,262 tracts auctioned via first-price

sealed bid auctions, including: bids and bidder identities, tract-level characteristics reported

in the sale booklets, and, importantly, the ONF’s ex-ante secret reserve price. An important

feature of our data is that we can combine the latter variable with information about bids

3Our rationale echoes a result of Bulow and Klemperer (1996) (Footnote 22) who find that, if bidders
have interdependent values, a seller benefits from waiting until after the auction ends to set a reserve price
(via a take-it-or-leave-it offer). In our setting, bidders’ valuations are not only correlated to each other, but
also to the seller’s reservation value through an unobserved heterogeneity component.

4Previous models where the seller perfectly knows her value either assume that the seller never revises
the secret reserve price (after bids are submitted) or only revises the reserve price up. Larsen (2020) argues
that a seller might accept an offer below their reserve price if they were uncertain about their valuation (or
bidders’ value distribution) when setting their reserve price, or if they held optimistic beliefs about auction
prices.

5As an example, interviews conducted with bidders in Marty (2015) (in French) show that discrepancies
between announced and actual timber volumes are quite common:

See what the ONF announced for the domanial forest X. We have just finished exploiting
it, it’s the ONF clerk who cruised it [...] They announced 798 m3 of oak. [...] We found exactly
500 m3 and they announce 798 m3!

6This dataset was collected by Costa and Préget (2004). See also Préget and Waelbroeck (2012).
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received and whether the tract was sold to identify the instances where the ONF adjusts its

initial reserve price down to accept the highest bid.

Reduced form analysis of the ONF’s revision rule reveals that: (1) when the highest bid is

above the ex-ante secret reserve price, the tract is always sold to the highest bidder; (2) when

the highest bid is below the ex-ante secret reserve price, the probability of sale depends on

the distribution of bids relative to the ONF’s appraisal value, as well as, the number of bids

received. To further investigate the effect of the ONF’s revision rule on auction outcomes

(i.e., revenue and surplus), we estimate a structural model that captures the main features of

our empirical setting. In particular, the model can be used to compute the value to the ONF

of acquiring better signals about the underlying heterogeneity of a tract, and to compare the

current policy to alternative reserve price policies.

We develop a model where firms bid in a first-price auction with unobserved auction

heterogeneity (e.g., timber quality and volume). The unobserved heterogeneity component

enters both bidders and seller’s values. While this component is perfectly observed by the

bidders as is standard in models with unobserved heterogeneity, we allow (but do not impose)

it to be imperfectly observed by the seller.7 The seller sets an ex-ante secret reserve price

based on her noisy signal of unobserved auction heterogeneity, and she can revise this reserve

price flexibly after bids are submitted. We show that, if the seller’s revision rule satisfies

a homogeneity assumption (in bids and appraisal value), separability of the unobserved

heterogeneity component and bidders’ idiosyncratic private values carries to the equilibrium

bid function as in the model of Krasnokutskaya (2011).

Under mutual independence of the unobserved heterogeneity component, bidders’ id-

iosyncratic values, and the seller’s noisy signal (or measurement error), the model is identified

from information on bids, the seller’s appraisal value, and allocation decisions (sold-unsold).

The identification proceeds in three steps: first, by using the joint distribution of an arbi-

trary bid and the corresponding appraisal value, the distribution of unobserved heterogeneity,

bidders’ individual bid component, and the seller’s signal can be identified. Intuitively, the

common unobserved heterogeneity component is identified from the within-auction correla-

tion between bids and the seller’s appraisal value. Second, a bidder’s probability of winning

conditional on the unobserved heterogeneity component is obtained from the unconditional

probability of winning (observed in the data), the distribution of winning bids, and the distri-

bution of unobserved auction heterogeneity. Third, the distribution of bidders’ idiosyncratic

value component is derived from knowledge of the conditional probability of winning by

7Correlation in bids could be due to affiliation (i.e., factors that are unobserved to the bidders and
the econometrician) or unobserved heterogeneity (i.e., auction-specific information commonly known among
bidders but not the econometrician). In the context of timber auctions, the latter appears to be the main
source of correlation.
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inverting the first-order condition. The estimation procedure proposed in the paper follows

the steps of the aforementioned identification argument.

We quantify the costs (in terms of revenue and surplus) of the ONF’s imperfect infor-

mation about tract-level unobserved heterogeneity and we assess the benefits derived from

keeping the reserve price secret and learning from the bids. As a benchmark, we simulate

the counterfactual first-best outcome: that is, assuming the ONF perfectly knows the unob-

served heterogeneity component and sets a public reserve price equal to their true reservation

value (efficient auction). This counterfactual gives an upper bound on total surplus and, im-

portantly, allows us to compute the value to the ONF of acquiring better signals (value of

information). Second, we compare the current policy to several alternatives: (a) no reserve

price, (b) announcing a public reserve price, (c) setting an ex-post secret reserve price equal

to a convex combination of average bid and ex-ante secret reserve price.

Counterfactual simulations show that acquiring perfect signals about unobserved hetero-

geneity would allow the seller to increase revenue by 5.77% and surplus by 5.22%. This

finding is useful in its own right as it permits a cost–benefit analysis of more comprehensive

cruises of tract characteristics by the ONF. The result speaks more generally to the impor-

tance of a seller’s appraisal technology in auction markets. In the context of the ONF’s

timber auctions, the seller supplements their imperfect appraisal technology (i.e., cruises)

with information revealed by the bids.

With respect to the effect of learning, announcing a public reserve price (policy (b))

increases revenue by 5.86% and reduces surplus by 2.34% relative to the current policy.

Switching from a public reserve price to a secret reserve price with efficient learning (policy

(c) with weights that maximize surplus) reduces the surplus gap (relative to the first-best) by

84%. Under efficient learning, surplus would increase by 5.84% and revenue would decrease

by 4.92% compared to a public reserve price (policy (b)). By learning from the bids, the seller

trades off greater allocative efficiency against lower revenue per auction. We evaluate the

robustness of these predictions to the sale format, the presence of asymmetries, endogenous

participation, and dynamics.

Our framework and empirical results will be useful to other auction markets. For instance,

a common feature in government procurement is the auctioneer’s right to reject bids above

a certain threshold (e.g., the engineer’s cost estimate of a highway repair project). In these

instances, bidders are effectively facing a secret reserve price with a pre-announced lower

bound. This feature can be accounted for in our model by assuming that the seller’s noisy

signal of unobserved heterogeneity is publicly disclosed to the bidder (along with other

auction-level observables), but the seller’s private (reservation) value component is not.

Finally, our theoretical framework improves on previous rationales for secret reserve prices
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by explicitly accounting for unobserved heterogeneity. Indeed, auction-specific information

known to the bidders but not to the econometrician is common and can have important

implications for auction outcomes. We show, in particular, that our rationale can be tested

against and distinguished from alternative rationales relying on independent and affiliated

private values models.

Related Literature. This paper contributes to three strands of the literature. The first

strand concerns solutions to the secret reserve price “puzzle.” Vincent (1994) develops an

example where secret reserve prices can induce greater participation in second-price auctions

with interdependent values. Li and Tan (2017) show that secret reserve prices can yield higher

revenue in first-price auction with I.P.V. if bidders are sufficiently risk-averse.8 Horstmann

and LaCasse (1997) show that in a common value setting, sellers of high-value items can

signal to potential bidders by using secret reserve prices when there are resale opportunities.

Elyakime et al. (1994) and Eklöf and Lunander (2003) argue that while public reserve prices

may be optimal, secret reserve prices yield higher sales which benefits the auctioneer when

paid a percentage of sales. Ji and Li (2008) study multi-round auctions with a secret reserve

price and find via numerical simulations that a secret reserve price can yield lower expected

procurement costs than a public reserve price, when the mean of bidders’ cost distribution

exceeds the mean reserve price.

Within this literature, the closest papers to ours are, first, Olimov (2013) who argues

that, in eBay auctions for used tractors, sellers use secret reserve prices to run unsuccessful

auctions to learn bidders’ willingness to pay and use this information in subsequent resale

opportunities.9 Second, Coey et al. (2020) argue that, in the context of online auctions, secret

reserve prices allow the seller to observe more bids (first and second highest) and dynamically

adjust her reserve price in future auctions. Our approach differs from these papers in two

respects: the seller learns about the unobserved component of auction heterogeneity rather

than bidder’s private valuations (or distribution), and our rationale does not rely on dynamics

or resale opportunities.10

Three recent contributions propose explanations based on non-standard or irrational

agents: Rosenkranz and Schmitz (2007) study first-price and second-price auctions if agents

have reference-based utility. Hossain (2008) studies a dynamic second-price auction where a

fraction of bidders are uninformed and learn only whether their private valuation is above a

posted price. Jehiel and Lamy (2015) use a competing auction environment with some buyers

8See also Brisset and Naegelen (2006) for a similar argument in English auctions.
9In the model of Olimov (2013), it is unclear why rational bidders would ever reveal their willingness to

pay in such auctions if the seller does not intend to sell. See the discussion in Jehiel and Lamy (2015).
10A number of papers discuss secret reserve prices in the context of eBay auctions. See, for instance,

Bajari and Hortaçsu (2003), Katkar and Reiley (2007), and Einav et al. (2015).
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who do not have rational expectations about the distribution of reserve prices when kept

secret. In our particular case, buyers are firms with at least some firm-specific component

of value, contract sizes are typically small relative to firm size, and buyers are well-informed

about tract heterogeneity, making explanations based on risk-aversion, irrational belief or

signalling less appealing. Moreover, in contrast to Elyakime et al. (1994), the seller is the

auctioneer in our setting.

Second, the paper contributes to the empirical literature on timber auctions. This lit-

erature encompasses studies of transaction costs and choice between unit-price and lump-

sum format (Leffler and Rucker (1991)), post-auction bargaining between seller and bidders

(Elyakime et al. (1997)), the effect of resale (Haile (2000)), mergers and preference pro-

grams (Brannman and Froeb (2000)), bid skewing in unit-price auctions (Athey and Levin

(2001)), collusion (Baldwin et al. (1997)), endogenous entry (Athey et al. (2011), Li and

Zheng (2012), Roberts and Sweeting (2016)), the presence of risk-aversion (Lu and Perrigne

(2008), Campo et al. (2011)). The closest papers to our study are: Athey and Levin (2001)

who highlight the importance of private information about auction heterogeneity in the U.S.

Forest Service timber auctions; and Li and Perrigne (2003) and Perrigne (2003) who uses

French timber auction data and analyze the revenue effects of secret versus public reserve

prices. The latter paper allows for risk-aversion and shows that secret reserve prices can be

revenue-enhancing.

Finally, we build on the literature on unobserved auction heterogeneity in first-price

auctions. The various approaches developed for identification include: the control function

approach (Campo et al. (2003), Roberts (2013), Balat et al. (2016)), the misclassification

approach (Hu et al. (2013), Luo (2019)), and more recent approaches based on a quasi-

control method (Compiani et al. (2019)) and mixture models (Kitamura and Laage (2018)).

Haile and Kitamura (2019) provide an excellent survey. Our identification method is closest

to the deconvolution approach of Li and Vuong (1998) and Krasnokutskaya (2011). Ignoring

unobserved heterogeneity can have significant impact on structural estimates as found by

Asker (2010), Krasnokutskaya (2011), Krasnokutskaya and Seim (2011). Closest to our

application, Grundl and Zhu (2019) show that bidders’ risk neutrality in timber auctions

would be rejected if unobserved heterogeneity is not controlled for. We contribute to this

literature by extending the identification results of Krasnokutskaya (2011) to settings with

secret reserve prices.11

The paper is organized as follows. Section 2 provides a simple example that illustrates the

main intuition of the paper. Section 3 gives background information about the ONF timber

11For ascending auctions, Freyberger and Larsen (2019) show that secret reserve prices can help identify
the distribution of unobserved heterogeneity and values when the number of bidders is unknown.
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sale program. Section 4 describes the data and present reduced form evidence on the ONF’s

secret reserve policy rule. Section 5 presents the model. Section 6 shows the identification

and estimation results. Section 7 presents the counterfactual analysis. Section 8 concludes.

All proofs are included in Appendix A.

2 A Simple Example

Before presenting the model, it is instructive to consider an example. In this setting, the

information structure is simple enough so that the seller learns perfectly from the bids. The

example highlights the main intuition and key features entering the general model.

A seller (she) offers a single object for sale to n bidders via a first-price auction. The

seller’s reservation value, denoted Y , can take values in {1
2
, 3
2
}. Bidder i’s value is the

sum of two components: the common component Y and a bidder-specific private value

Xi ∼ U [−1
2
, 1
2
], which is independent of Y and across bidders. Therefore, if Y equals 1

2
,

bidder values are distributed U [0, 1]; whereas if Y equals 3
2
, bidder values are distributed

U [1, 2], as shown in Figure 1.

0 1 2 haha

Y = 1
2

Y = 3
2

Figure 1

In addition to knowing his private value Xi, bidder i perfectly observes the common

component Y . The seller, however, does not. Let the seller’s prior belief about Y be uniform(
1
2
, 1
2

)
. The seller acts as a social planner and aims to maximize total surplus.

In the first-best full information case, the seller perfectly observes Y and maximizes total

surplus by setting an ex-post efficient public reserve price equal to Y . Ex-post surplus is

equal to max{Y,max
i

Y +Xi}.
Next, we compare surplus when the seller holds beliefs

(
1
2
, 1
2

)
about Y and uses a public

or secret reserve price. Under a public reserve price, expected surplus is maximized with a

reserve price equal to 1
2
. If Y = 1

2
, the allocation is efficient. If Y = 3

2
, however, the item is

always sold, which is inefficient if the highest bidder’s value is less than 3
2
.12

12By setting a reserve price of 1
2 , the seller allocates efficiently when Y = 1

2 but misallocates when Y = 3
2 .

The benefits (relative to a reserve price of 3
2 ) in terms of expected surplus is

∫ 1
1
2

(
u− 1

2

)
dH(u), where

H(u) = un is the distribution of the first-order statistic of bidder values (Y = 1
2 ). The costs in terms of

expected surplus is
∫ 3

2

1

(
3
2 − u

)
dH̃(u), where H̃(u) = (u − 1)n is the distribution of the first-order statistic

of bidder values (Y = 3
2 ). The benefits term dominates under a uniform prior.
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With a secret reserve price, we argue that the seller can perfectly learn the value of Y

from the bids and reach the first-best level of surplus. Consider the following equilibrium of

the two-stage game in which bidders submit sealed bids, and given the bids and her prior

belief about Y , the seller chooses an ex-post reserve price: In stage 2, if all bids are below 1,

the seller sets the ex-post secret reserve price equal to 1
2
. Otherwise, the seller sets a reserve

price equal to 3
2
. In the first stage, if Y = 1

2
, bidders bid as in a first-price auction with

reserve price of 1
2
. if Y = 3

2
, bidders bid as in a first-price auction with reserve price of 3

2
.

In this example, not committing to a public reserve price allows the seller to delay her

allocation decision until perfectly learning the true value Y from the bids. The allocation

is ex-post efficient. In the general model of Section 5, we investigate the seller and bid-

ders’ behavior when the seller observes a noisy signal of Y and bids do not perfectly reveal

the common component of value. Before doing so, the next section provides background

information about the industry and the data that motivate features of the general model.

3 Industry Background

Our empirical work will focus on timber auctions conducted by the French national Public

Forest Service (Office National des Forêts, ONF hereafter). This government agency is in

charge of the management of France’s approximately 11 million hectares of public forests

and the sale of standing timber to mills and logging companies. Competitive bidding is the

main mechanism chosen by the ONF for its timber sales (about 85% of total sales). We

focus here on sales via (lump-sum) first-price sealed bid auctions, the most common auction

format used by the ONF.13

Each administrative region in France has its own ONF local office. The data analyzed in

this paper comes from the Grand Est (previously Lorraine) region (Eastern France). Local

offices are in charge of the management of the public forestry on their own territory and are

responsible for organizing auctions. Each regional office uses the profits from these sales to

cover their operating costs. As the auctioneer, the ONF’s objective is to secure timber supply

to the local timber industry at a price that allows them to remain competitive. Therefore,

we interpret the ONF’s objective as the maximization of the local timber industry surplus

subject to financial constraints (budget balance).

In advance of each sale, the ONF organizes “cruises” of the various tracts (around 200

per sale). A cruise consists in sending a team of prospectors to collect samples of the

species present in a tract. Samples are then used to infer tract characteristics such as the

13Contrary to North American timber auctions, unit-price auctions where bidders submit a bid per species
are less common.
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composition, volumes per species, tree counts, tract surface, and condition of the trees. The

ONF publicly announces the findings in a booklet available to potential bidders. Due to

the large number of tracts surveyed and the ONF’s limited resources, tract characteristics

(in particular, volumes and quality) reported in the booklet are purely indicative and often

imprecise. The ONF has no contractual obligation vis-a-vis reported volumes or quality.

Potential bidders are private firms, typically local sawmills. As the location of all auc-

tioned tracts is given in the sale booklet, bidders have the opportunity to cruise the tracts

and form their own estimates of tract characteristics. This is especially relevant given the

lump-sum auction format used, where the winner pays his bid irrespective of realized timber

volumes and composition. These cruises allow the bidder to gather two pieces of informa-

tion: first, additional and more precise information about tract characteristics common to

all firms (volumes, quality, etc.); second, information about their private value for the tract,

which depends on firm-specific harvesting costs and the type of final product they will be

able to sell using the harvested timber. Bidders’ private values vary due to their diversity of

operations: logging enterprises, sawmills, paper mills, board factories, etc.14

The ONF also computes an appraisal value for each tract which is not disclosed to the

bidders, and based on this value, sets an (ex-ante) reserve price.15 The reserve price is kept

secret at the time of the auction. On the day of the sale, the ONF director collects sealed

bids for each tract, opens the bids and ranks them. If the highest bid is above the ex-ante

secret reserve price, the ONF sells the tract at the bid price. If the highest bid is below

the ex-ante secret reserve price, the ONF may still decide to sell the tract to the highest

bidder at their bid. The main criteria leading to a sale decision are: the number of bids

received and their distribution, their difference relative to the ex-ante secret reserve price,

and revenue constraints. About 40% of auctioned tracts are sold at a bid below the ONF’s

ex-ante reserve price. Whenever a tract is sold, the winner’s identity and bid are publicly

announced. If a tract goes unsold, the ex-ante secret reserve price is announced.

Discussions with ONF officers reveal that the Forest Service does not commit to any

public reserve price because they do not perfectly know their reservation value. This value

corresponds to the expected outcome in a future sale, which depends primarily on the tract

characteristics, how market participants value each characteristics, and future timber market

conditions. Recognizing that bidders have better information about tract characteristics, the

ONF does not commit to a public reserve price in order to retain the option of adjusting its

14In 2018, of the 15 millions m3 of timber sold, 4 were destined for construction, 3 for furniture manufac-
turing, 4 for the paper and cardboard industry, and 4 for energy.

15Discussions with the ONF reveal that this appraisal value does not account for bidder’s private values
(i.e., final product), but assess the value of timber as intermediary input entering each mills idiosyncratic
production function. We interpret this appraisal value as reflecting the common component.
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reservation value after observing the bids.

4 Data and Reduced-Form Analysis

This section describes the data used in our empirical application. We use data on ten sales

of standing timber by the ONF that took place in the Grand Est region in the Fall of 2003.

This dataset was collected in the context of a report commissioned by the ONF (Costa and

Préget (2004)). The data contains information on 2,262 tracts auctioned via first-price sealed

bid auctions, including: bids and bidder identifiers, tract level characteristics reported in the

sale booklets (estimates of volume per species, surface, number of trees, etc.), the ONF’s

initial appraisal value for each tract, and the ONF’s ex-ante secret reserve price. Over the

sale season, 13, 909 hectares of land were auctioned for a gross revenue of 15, 360, 366 e.

The data contains an array of tract characteristics, which helps control for auction het-

erogeneity. These tract characteristics are disclosed in the sale booklet to all prospective

bidders. Descriptive statistics for the continuous and categorical variables are presented in

Table 1 and Table 2 respectively. We refer the interested reader to Appendix B.1 for a

more detailed description of the tract-level characteristics presented in Table 2. To capture

tract level heterogeneity in volume per species, we construct a Herfindahl index of tract

heterogeneity.

We analyze the main determinants of the bids and number of bidders in Table 3 via OLS

regressions. Bids and participation are correlated with tract characteristics as expected: the

volume of timber, homogeneity of species (Herfindahl index) are positively correlated with

these outcomes variables. Tract quality (as controlled for by the categorical variables) has

an expected sign: e.g., tracts with heavy grapeshot damages from WWI, or with difficult

logging and extractions receive lower bids and attract fewer bidders.

A rare feature of the data is that we observe the seller’s ex-ante secret reserve price as

well as the allocation decision after bids are submitted. By combining the ex-ante secret

reserve price with information about bids received and whether the tract was sold, we are

able to identify the instances where the ONF adjusts its initial reserve price down to accept

the highest bid.

Preliminary analysis indicates that revisions to the ex-ante reserve price are based on the

bids received and the seller’s appraisal value. Figure 2 shows a scatter-plot of auctioned tract

sale status (i.e., sold or unsold) as a function of the highest bid (y-axis) and reserve price

(x-axis) normalized by the appraisal value (or seller’s estimate). The figure shows that tracts

are always sold when the highest bid is above the ex-ante secret reserve price. Otherwise,

the tract may or may not be sold when the highest bid is below the ex-ante reserve price. In
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Variable mean std min max r(rev) p(rev)

Surface (ha) 11.34 12.21 0.2 299.0 -0.01 0.65
Trees (number) 239.86 204.18 18 2259 0.02 0.54
Poles (number) 195.21 529.51 0 11366 -0.05 0.09
Bidders (number) 2.46 2.39 0 13 0.23 0.0
Herfindahl index 0.63 0.21 0.21 1.0 0.0 0.97

Volumes (in m3)
Crown 121.59 134.04 0.0 1196.47 -0.02 0.56
Stump 0.23 4.74 0.0 153.83 0.01 0.64
Stem oak 59.06 101.3 0.0 859.98 0.01 0.68
Stem spruce 28.2 78.41 0.0 716.01 0.06 0.04
Stem beech 96.83 146.3 0.0 1365.8 -0.01 0.86
Stem pine 13.85 60.4 0.0 788.52 0.01 0.64
Stem fir 89.58 170.59 0.0 1240.98 0.02 0.48

Value (in euros)
Reserve price 10886.71 10282.89 100 112000 0.02 0.5
Appraisal value 13154.41 12105.59 102 131662 0.03 0.29

Table 1: Descriptive statistics for the continuous variables. The last two columns show the
correlation with the seller’s decision to accept the highest bid, when all bids are below the
ex ante reserve price. ”r” and ”p” stand for Pearson correlation coefficient and p-value.

particular, about half of tracts in which the highest bid is below the ex-ante reserve price,

end up being sold.

In Table 4, we present the averages of the reserve price, highest bid, appraisal value,

as well as the fraction of revisions among the tracts that were eventually sold, grouped

by the number of bidders. The fraction of tracts sold after the reserve price was revised

down increases with the number of bids received: if the highest bid is below the ex-ante

secret reserve price, the tract is more likely to be sold when it attracted more bids.16 This

result echoes the last two columns of Table 1, showing the correlation between various tract

characteristics and whether the reserve price is revised down. Except for the number of

bidders, the decision to revise is not correlated with tract characteristics.

16This pattern is consistent with the seller putting more weight on bids when the number of bidders is
high: in such instances, the signal that the seller receives through bids regarding auction-level unobserved
heterogeneity is more precise.
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Variable Explanation # tracts % tracts mean(rev) std(rev)

Stand
High forest 1199 53.1 0.56 0.5
Conversion of a stand 803 35.56 0.39 0.49
Coppice forest 149 6.6 0.45 0.5
Coppice with standards 107 4.74 0.5 0.5

Cut
Arranged Cutting 1222 54.12 0.52 0.5
Regeneration Cutting 756 33.48 0.47 0.5
Selection Cutting 164 7.26 0.41 0.5
Other Cutting 71 3.14 0.55 0.51
Accidental Products 45 1.99 0.42 0.51

Grapeshot
No damage 1649 73.03 0.52 0.5
Light damage 373 16.52 0.37 0.48
Average damage 150 6.64 0.5 0.5
Heavy damage 57 2.52 0.15 0.38

Owner
Community-owned forest 1637 72.5 0.44 0.5
State-owned forest (ONF) 621 27.5 0.63 0.48

Landing area
Unarranged 1914 84.77 0.51 0.5
Arranged 277 12.27 0.43 0.5
None 67 2.97 0.26 0.44

Quality
Average 930 41.19 0.48 0.5
High 907 40.17 0.51 0.5
Very low 240 10.63 0.41 0.49
Very high 103 4.56 0.52 0.5
Low 49 2.17 0.45 0.52

Conditions
Normal l&e 1380 61.12 0.5 0.5
Easy l&e 492 21.79 0.44 0.5
Difficult l&e 227 10.05 0.5 0.5
Difficult extraction 69 3.06 0.57 0.5
Very Difficult l&e 63 2.79 0.43 0.51

Table 2: Descriptive statistics for the categorial variables. The last two column shows the
mean and standard deviation of the ONF’s revision decision. ”rev” stands for the binary
decision to sell (1 vs 0), when all bids are below the ex ante reserve price, and ”l&e” stands
for logging and extraction. Grapeshot damage is damage from WWI.
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Table 3: Determinants of bids and participation

Bids # Bidders
(1) (2)

Estimate S.E Estimate S.E

Number of bidders 0.268 (0.0116)
Stand (ref: Conversion of stand)
High forest -0.0969 (0.0156) 0.00823 (0.0435)
Coppice forest -0.0845 (0.0433) -0.134 (0.0870)
Coppice with standards -0.0408 (0.0223) -0.0535 (0.0620)

Cut (ref: Arranged cutting)
Other Cutting -0.00990 (0.0338) -0.106 (0.0714)
Selection Cutting 0.0970 (0.0381) -0.0500 (0.0778)
Accidental Products -0.308 (0.0642) -0.455 (0.0939)
Regeneration Cutting 0.138 (0.0114) -0.0225 (0.0301)

Grapeshot (ref: no damage)
Light -0.00639 (0.0160) -0.252 (0.0352)
Average -0.124 (0.0234) -0.305 (0.0513)
Heavy -0.139 (0.0384) -0.371 (0.0795)

Owner (ref: community-owned)
ONF-owned 0.0271 (0.0120) 0.148 (0.0317)

Landing area (ref: Arranged)
None -0.165 (0.0344) -0.184 (0.0785)
Non-arranged -0.0254 (0.0142) -0.0618 (0.0401)

Quality (ref: High)
Average -0.0864 (0.0111) -0.209 (0.0281)
Low -0.0532 (0.0506) -0.444 (0.0865)
Very Low -0.137 (0.0192) -0.208 (0.0447)
Very High 0.0446 (0.0191) 0.210 (0.0593)

Conditions (ref: Difficult L&E)
Easy L&E 0.0562 (0.0215) 0.266 (0.0473)
Normal L&E 0.0861 (0.0193) 0.232 (0.0407)
Very difficult L&E -0.205 (0.0413) -0.00291 (0.0802)
Difficult E 0.0596 (0.0350) 0.144 (0.0787)

Continuous controls
Herfindahl index 0.223 (0.0411) 0.358 (0.101)
Number of trees -0.0501 (0.0151) -0.0749 (0.0381)
Surface -0.0294 (0.0116) -0.115 (0.0264)
Number of poles -0.100 (0.00345) 0.00127 (0.00888)
Timber volume (total) 1.123 (0.0185) 0.422 (0.0449)

Sale FEs Yes Yes
Volumes per species Yes Yes

Observations 5,483 2,218
F-stat 677.3 33.0
R2 0.85 0.40
Adjusted R2 0.85 0.39

Note: Unit of observation: bid in model (1) and auction in model (2). Standard errors
are in parenthesis. Dependent variables and continuous controls are in log. L&E refers
to logging and extraction.
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Figure 2: Scatter-plot of tract status (sold as green dots, unsold as red crosses) as a function
of the highest bid (y-axis) and reserve price (x-axis) normalized by the appraisal value (seller’s
estimate). The 45◦ line corresponds to tracts where the maximum bid equals the (ex-ante)
secret reserve price.

Number of bids 0 1 2 3 4-5 6+

Auctioned tracts 490 511 384 286 325 262

% tracts 0.22 0.23 0.17 0.13 0.14 0.12

% revise down NA 0.32 0.51 0.58 0.65 0.7

avg log appraisal 8.77 8.9 9.07 9.24 9.46 9.72

avg log reserve 8.48 8.66 8.86 9.08 9.32 9.61

avg log max bid NA 8.48 8.81 9.04 9.36 9.68

avg max bid / reserve NA 0.89 1.0 0.99 1.09 1.12

avg reserve / estimate 0.78 0.81 0.84 0.88 0.89 0.91

Table 4: Descriptive statistics by number of bids submitted

Finally, we estimate a logit probability model for the revision decision (i.e., dummy for

whether a tract is sold given that the highest bid is below the ex-ante reserve price) and

report it in Table 5. We control for observed tract characteristics and show the coefficient on
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variables that a priori enter the ONF’s decision to revise its ex-ante reserve price: i.e., the

number of bids received, the highest bid, the average of the remaining bids, and the appraisal

value.17 In addition, we include interactions between theses variables and whether the tract

is owned by the state (ONF-owned) or by a local commune. Specification (1) does not

include controls for auction heterogeneity, specification (2) includes categorical controls, and

specification (3) include both continuous and categorical controls for tract characteristics.

For tracts owned by the ONF, the revision decision depends positively on the number of

bids received and the highest bid (as a fraction of the reserve price) and depends negatively

on the mean bid (excluding the highest bid) and the appraisal value. This is consistent with

the ONF learning: bids (and appraisal value) are used to form an ex-post reserve price that

is compared to the highest bid. Consistent with the findings in the last two columns of

Table 1 and Table 2, the continuous and categorical tract characteristics do not significantly

predict the likelihood of revision given bids, appraisal value, and number of bids received.18

We also verify that, once the ratio of bids to appraisal value is controlled for, the seller’s

revision decision does not depend on the actual level of bids and appraisal value.

5 The Model

This section presents the first-price auction model under secret reserve prices and unob-

served auction heterogeneity. Bidders perfectly observe the common component of auction

heterogeneity. The seller, however, only receives a noisy signal of the common component.

We derive properties of the equilibrium bidding strategy in this context.

Random variables are denoted with upper case letters. Lower case letters denote realiza-

tions of random variables. Vectors are denoted in bold.

The seller (she) offers a single object for sale to n bidders in a first-price sealed bid

auction. All players are risk-neutral and the number of bidders is common knowledge. The

object is sold under unobserved auction heterogeneity. That is, bidder i’s valuation is equal

to the product of two components: one is common and known to all bidders; the other is

individual and the private information of bidder i ∈ {1, ..., n}.19 Both the common and the

individual valuation components are random variables, and they are denoted by Y and Xi,

respectively.20

17We also investigated alternative specifications using the second, and third highest bids.
18A likelihood ratio test of joint equality of the tract characteristics controls to zero cannot reject the null

of equality to zero at the 1% level.
19Bidders’ private values vary, in particular, due to their diversity of operations and depend on the profits

from the final product made from the harvested timber.
20The assumption of multiplicative rather than additive separability is imposed as it is more consistent

with patterns in the data. See the specification tests in Section 6.
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Table 5: Logit Model for the Revision Decision

Dep. variable: P(tract sold)

(1) (2) (3)

Number of bidders (log) 0.711 1.522 1.678
(0.317) (0.380) (0.401)

ONF-owned 7.033 7.692 8.566
(2.067) (2.312) (2.393)

ONF-owned × Number of bidders (log) -0.271 -0.709 -0.767
(0.571) (0.634) (0.659)

Highest bid 10.46 11.36 11.68
(1.154) (1.265) (1.329)

ONF-owned × Highest bid 0.124 0.771 0.759
(2.354) (2.576) (2.639)

Mean bid 2.126 2.725 2.989
(0.951) (1.097) (1.165)

ONF-owned × Mean bid -3.436 -4.726 -5.141
(2.035) (2.210) (2.254)

Appraisal value 0.955 0.110 0.277
(0.497) (0.567) (0.611)

ONF-owned × Appraisal value -2.775 -2.356 -2.638
(0.947) (1.046) (1.103)

Categorical controls No Yes Yes

Continuous controls No No Yes

Observations 1,257 1,240 1,240
Pseudo R2 0.41 0.46 0.48
LR χ2 543 611 637
Prob > χ2 0.00 0.00 0.00
Baseline predicted probability 0.55 0.55 0.55

Note: Unit of observation: auction (with at least two bidders). Standard er-
rors are in parenthesis. Bids and appraisal value are scaled by the reserve
price. Mean bid is the average of all bids excluding the highest. Categori-
cal controls include all the variables in Table 2 and dummies for each sale.
Continuous controls include all timber volumes per species, Herfindahl index,
surface, number of trees (in log) and lot order (within sale).
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The seller’s reservation value is her opportunity cost of selling the object. If a tract

goes unsold, the seller can re-auction it the following year. Therefore, the seller’s reservation

value depends on the common component Y . Let the seller’s reservation value be the product

of the common component Y and a private component X0.
21 In our setting, the seller is

imperfectly informed about the realization of Y . We assume that the seller observes only

a noisy signal of Y , denoted Ỹ = Y × S, for some random variable S. The latter variable

corresponds to a measurement error (in volumes and quality). In our empirical application,

the variable Ỹ corresponds to the seller’s private appraisal value.22

Information sets: The information set of bidder i is {xi, y}. The seller’s information

set is {x0, ỹ}.
Primitives of the model: For simplicity, we assume that bidders’ private values are

symmetric and independent. The primitives are the marginal distribution of Y , Xi’s, S, and

X0.

The following standard assumptions are maintained throughout:

1. All random variables Y , Xi’s, S, and X0 are assumed mutually independent, with

marginal distributions denoted FX , FY , FS, and FX0 .

2. The supports are given by [x, x], [y, y], [s, s], and [x0, x0]. The lower bounds satisfy:

x > 0, y > 0, s > 0, and x0 > 0.

Reserve price: Before observing Ỹ and X0, the seller commits to using an ex-post

reserve price rule R1(·) which takes the seller’s idiosyncratic value X0, the appraisal Ỹ (both

kept secret at the time of the auction) and bids received B = (B1, ..., Bn) as arguments.23

The function R1(X0, Ỹ ,B) is common knowledge to all players. The object is allocated to

the highest bidder if his bid exceeds R1. In our empirical application, we do not impose

an objective function for the seller nor do we assume that the seller is using Bayes’ rule in

setting the ex-post reserve price.24

We impose the following assumptions on the shape of the ex-post reserve price.

21The assumption that the ONF receives its reservation value when a tract is not sold (instead of no
payoff) is consistent with the previous literature, e.g., Li and Zheng (2012), Roberts and Sweeting (2016).
We interpret X0 as the continuation value of keeping the tract unsold if Y = 1.

22We rule out any common-value dimension between bidders: that is, knowing bidder j’s private informa-
tion does not affect bidder i’s valuation of the tract. However, because the seller observes only a noisy signal
of Y , there is a common-value dimension between the bidders and the seller.

23We assume the range of (possibly off-equilibrium) bids to be [0,∞). If bidder i refrains from submitting a
bid, the seller takes Bi to be equal to the minimal bid among the bids submitted. This is a technical assump-
tion required to define the ex-post reserve price off-equilibrium path and, thus establish full participation on
the equilibrium path.

24If the seller maximizes profits and cannot pre-commit, she would choose a secret reserve price equal to
her expected reservation value given her information set (see, for instance, Elyakime et al. (1994) and Li and

Tan (2017)). That is: R1(X0, Ỹ ,B) = X0E[Y |Ỹ ,B].
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Assumption 1. The ex-post reserve price R1(x0, ỹ,b) is strictly positive, differentiable,

weakly increasing in all arguments and strictly so in ỹ, and the following conditions hold:

1. (Homogeneity of degree 1) ∀λ > 0, R1(x0, λỹ, λb) = λR1(x0, ỹ,b)

2. (Sale guarantee) ∀x0, ỹ,∃b∗ > 0 : R1(x0, ỹ, b
∗, . . . , b∗) < b∗

3. (No exclusion) R1(x0, s, x, . . . , x) < x

Assumption 1.1 is required to prove the separability of bids in the unobserved hetero-

geneity component.25 Assumption 1.2 means that, for a large enough bid, the tract will

necessarily be sold. This assumption is required to prove existence of an ex-ante reserve

price consistent with the allocation patterns in Figure 2 (see Lemma 1 below). Finally, As-

sumption 1.3 states that at the lowest realization of the seller’s signal and private value, the

tract will be necessarily sold. This assumption allows us to rule out binding reserve prices.

Moreover, it is consistent with our discussions with ONF officers indicating that, in the vast

majority of cases, all firms which cruise a tract end up submitting a bid (Athey and Levin

(2001) document a similar pattern for the U.S. timber industry).

As described in the previous section, the ONF also chooses an ex-ante secret reserve price

before bids are submitted. The allocation rule (Figure 2) is such that tracts are always sold

when the highest bid exceeds this ex-ante secret reserve price. Note, however, that from the

perspective of the bidders, only the ex-post reserve price is relevant to their bidding behavior.

Appendix B.2 discusses the role of the ex-ante reserve price: in particular, the ONF uses this

reserve price as a benchmark to simplify the auctioneer’s allocation decision and is publicly

announced at the end of the auction if all bids are rejected.

The following lemma: (i) characterizes the ex-ante reserve price, and (ii) derives an

equivalent representation of the event where “bidder i out-bids the ex-post reserve price.”

Lemma 1. Under Assumption 1, there exist unique functions R0(x0, ỹ) and R−i1(x0, ỹ, b−i)

defined as solutions to R1(x0, ỹ, R0, . . . , R0) = R0 and R1(x0, ỹ, b)|bi=R−i1
= R−i1. These

functions satisfy

1. bi ⩾ R0(x0, ỹ), bi ⩾ maxj ̸=i bj ⇒ bi ⩾ R1(x0, ỹ,b)

2. bi ⩾ R1(x0, ỹ,b) ⇔ bi ⩾ R−i1(x0, ỹ,b−i)

for all i and (x0, ỹ,b−i). Moreover, R−i1 is continuous in all arguments and homogeneous

of degree 1 in bids and appraisal value.

25As discussed in Section 4 (see Table 5), once the ratio of bids to appraisal value is controlled for, the
seller’s revision decision does not depend on the level of bids and appraisal value. This finding suggests that
the allocation rule in the data is consistent with Assumption 1.1.
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Lemma 1.1 shows that the ex-ante reserve price, defined as a fixed point of the ex-post

reserve price rule when all bids are equal, satisfies the allocation rule shown in Figure 2.

Lemma 1.2 states that, from the perspective of bidder i, playing against the ex-post re-

serve price rule is equivalent to playing against a random threshold R−i1, that is only a

function of the (random) rivals’ bids and seller’s valuation. In particular, the inequality

bi ⩾ R−i1(x0, ỹ,b−i) makes explicit that the probability of out-bidding the ex-post reserve

price is an increasing function of bi—a condition that guarantees that the second-order con-

dition of optimal bidding holds, validating the first-order condition approach used in the

estimation (see Appendix C for more details). In what follows, we use the two representa-

tions in Lemma 1.2 interchangeably.

Strategy and payoffs: Given the realization of the common component y ∈ [y, y], a

bidding strategy is a real-valued function defined on [x, x]:

βy : [x, x] → [0,∞).

The profit realization of bidder i, π(xi, y; bi), equals (xiy − bi) if bidder i wins the tract

with a bid bi and zero if he loses. At the time of bidding, bidder i knows y and xi but not

his opponents’s bids B−i = {Bj}j ̸=i nor the seller’s private information (X0, Ỹ ). The interim

expected profit of bidder i is given by

π(xi, y; bi) = (xiy − bi)P (bi ≥ R−i1(X0, Ỹ ,B−i) ∩ bi ≥ Bj, j ̸= i | Y = y) (1)

To win the tract, bidder i must not only outbid his opponents but also the ex-post

secret reserve price chosen by the seller. There are two sources of randomness to the ex-

post secret reserve price: first, R−i1 depends on the seller’s ex-ante valuation for the object

(X0, Ỹ ) which differs from the known realization of the common component Y ; second, R−i1

depends on bids submitted by bidder i’s opponents. In the remainder of the paper, we refer

to the probability in Equation (1) as the probability of winning conditional on Y = y given

a bid bi, and to P (bi ≥ R−i1(X0, Ỹ ,B−i) ∩ bi ≥ Bj, j ̸= i) as the unconditional probability

of winning given a bid bi.

Equilibrium: We seek a symmetric Bayes-Nash equilibrium in continuous and strictly

monotone strategies. The equilibrium is characterized by a function βy(.) such that π(xi, y; bi)

is maximized at bi = βy(xi), assuming that bj = βy(xj) for all j ̸= i, all i ∈ {1, . . . , n} and

realization of Xi. In the remainder of the paper, we assume that such an equilibrium exists.26

26The strict monotonicity and continuity properties are inherited by the bidding strategy from the prob-
ability of winning given bid b, by MCS Theorems (see Milgrom and Shannon (1994)) and by the Maximum
Theorem, assuming uniqueness of the best response. In particular, Lemma 1.2 guarantees that as the player
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Multiplicative separability: We extend a property of equilibrium bidding strategies

under unobserved auction heterogeneity derived by Krasnokutskaya (2011) to the case with

secret reserve prices.

Proposition 1. Under Assumption 1, if α(.) is an equilibrium bidding strategy of the game

indexed by y = 1, then an equilibrium bidding strategy in the game indexed by y, with y ∈
[y, y], is such that βy(xi) = yα(xi), for all i, with boundary condition α(x) = x. Moreover,

all types with private value above x have a strictly positive probability of winning.

Proposition 1 states that separability of the unobserved heterogeneity component from

private values carries to equilibrium bids. This property allows us to apply a deconvolution

approach to separately identify private components from the common unobserved component

as described in the next section.

6 Identification and Estimation

This section presents the identification of the model, the estimation approach, and the results.

6.1 Identification

In our setting, the econometrician has access to: bid data (B1, ..., Bn), the seller’s appraisal

value Ỹ and secret reserve price R0, and auction outcomes. The data is based on N indepen-

dent draws from the distribution of (Y, {Xi}i=0...n, S). We derive properties of the available

data such that the model primitives are identified. For the rest of this section, the number

of bidders is fixed to n.

Denote by GB(.) and gB(.) the cumulative distribution and density functions of the

random variable Bi; and let bij denote the realization of Bi in auction j.

Proposition 1 shows that bij = yaij, where aij is the bid bidder i would submit if y were

equal to one. We refer to aij as a normalized bid. We use Ai to denote the random variable

with realizations equal to aij with distribution function denoted by GA(.) and probability

density function gA(). The variables y and aij are not observed by the econometrician.

The identification result is established as follows. First, it is shown that the probability

density function of Y , A and S can be uniquely determined from the joint distribution of a

bid and the seller’s appraisal value. Second, the probability of winning, conditional on Y = 1

and given a bid ai, is identified from the unconditional probability that bidder i wins the

increases their bid, the probability of exceeding the ex-post reserve price is non-decreasing. Consequently, the
first order approach to characterizing the equilibrium is valid, see Appendix C for a more detailed discussion.
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auction, the distributions of winning bids, and the distribution of the common component

Y .27 Third, monotonicity of the inverse bid function is used to identify the distribution of

Xi from the distribution of Ai.

Proposition 2. Under Assumption 1, the probability density functions fY , fS, and fX are

identified from the distributions of bids, appraisal value, and allocation rule.

The proof of this proposition consists of three steps. The first and third steps follow

the arguments of Li and Vuong (1998) and Krasnokutskaya (2011). Our setting differs from

the standard model of first-price auction, however, due to the seller’s revision rule. Step

2 accounts for the seller’s revision rule when expressing a bidder’s probability of winning

conditional on Y = 1. This probability is used in step 3 to invert the first-order condition

and recover the distribution of bidder specific values.

Step 1: Identification of the probability density functions of Y , Ai, and S.

We apply the statistical result from Kotlarski (1966) to the log transformed random variables

Bi = Ai × Y and Ỹ = S × Y

log(Bi) = log(Ai) + log(Y )

log(Ỹ ) = log(S) + log(Y )

Kotlarski’s result shows that there is a mapping from the joint characteristic function of

(Bi, Ỹ ) (in logs) to the characteristic functions of the variable of interest Ai, Y , and S. Let

Ψ(., .) and Ψ1(., .) denote the joint characteristic function of (log(Ỹ ), log(Bi)) and the partial

derivative of this characteristic function with respect to the first component, respectively.

Also, let Φlog(Y )(.), Φlog(Ai)(.), and Φlog(S)(.) denote the characteristic functions of log(Y ),

log(Ai), and log(S). Then,

Φlog(Y )(t) = exp

(∫ t

0

Ψ1(0, u2)

Ψ(0, u2)
du2 − itE[log(S)]

)

Φlog(S)(t) =
Ψ(t, 0)

Φlog(Y )(t)

Φlog(A)(t) =
Ψ(0, t)

Φlog(Y )(t)

From the knowledge of the characteristic functions, we can derive the probability density

functions of Y , S, and A. We first impose the normalization E[log(S)] = 0.

27If the value one is not in the support of Y , then one can condition on any known arbitrary value y0 in
the support of Y instead. The support of Y is identified in the first step.
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Step 2: Identification of the winning probability conditional Y = 1.

Let ωi denote the event that bidder i wins the auction (unconditional of the realization

of Y ), that is,

ωi = {Bi ≥ R1(X0, Ỹ , Bi, B−i) ∩Bi ≥ B−i}.

Similarly, denote by ω̃i the event that bidder i wins the auction indexed by Y = 1

ω̃i = {Ai ≥ R1(X0, S, Ai, A−i) ∩ Ai ≥ A−i}.

In general, ω̃i coincides with ωi only conditional on Y = 1. Absent a reserve price (i.e., the

first inequality Ai ≥ R1(X0, S, Ai, A−i)), the probability of event ω̃i occurring is simply 1/n,

since bidders are symmetric. With a reserve price R1, this probability will be less than 1/n.

Let M denote the random variable Ai conditional on the event ω̃i and L denote the

random variable Bi conditional on the event ωi. Using Bayes’ rule, the probability of winning

conditional on Y = 1 and given a bid a, can be expressed as

P (ω̃i|Ai = a) =
gM(a)P (ω̃i)

gA(a)
(2)

We show that the three probabilities on the right hand side of Equation (2) are identified

from the data.28 The density function of the normalized bids gA(a) has been identified in

step 1. To identify the remaining two components, we rely on the following lemma.

Lemma 2. Under Assumption 1, the event ω̃i is equal to the event ωi. The distribution of

M is identified from the deconvolution of the distributions of L and Y .

Lemma 2 shows that the probability of event ω̃i is directly identified as the probability

of winning an auction in the data, P (ωi). Moreover, the distribution of normalized bids

conditional on winning (M) is identified from the distribution of bids conditional on winning

(L) and the distribution of Y . The characteristics function of L is identified from the data,

while the characteristic function of Y is identified in the previous step. By independence of

M and Y , we can recover the characteristic function of (log) M as

Φlog(M)(t) =
Φlog(L)(t)

Φlog(Y )(t)
.

The characteristic function of M and its probability density function can be subsequently

recovered from knowledge of the characteristic function of log(M).

28Absent a reserve price, Bayes’ rule simplifies to the probability of outbidding rivals’ bids: P (ω̃i|Ai =

a) =
nGA(a)n−1gA(a) 1

n

gA(a) = GA(a)
n−1.
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Noting that the event ω̃i can be equivalently expressed as

ω̃i = {Ai ≥ R−i1(X0, S, A−i) ∩ Ai ≥ A−i}

let W = max{R−i1(X0, S, A−i), A−i}. In what follows, we denote the probability of winning

conditional on Y = 1, given a bid a, as FW (a).

Step 3: Identification of the probability density functions of bidders’ values Xi

We apply the result from Laffont and Vuong (1996) and Guerre et al. (2000) based on

the first-order condition. Having recovered the probability of winning conditional on Y = 1

(FW (a)), we can solve bidders’ optimization problem and find the equilibrium inverse bidding

strategy, that is,

ξ(a) ≡ α−1(a) = a+
FW (a)

F ′
W (a)

The inverse bid function is combined with the distribution of normalized bids GA (ob-

tained in step 1) to back out the distribution of individual valuations Xi.

Step 4: Identification of the probability density function of the seller’s private value X0.

The fact that R0 is observed in the data helps to identify the seller’s private value X0.

Discussions with ONF officers revealed that R0 is linear in the appraisal value, therefore, we

impose the functional form R0(X0, Ỹ ) = X0Ỹ .29

From the equality R0 = X0Ỹ and the independence of X0 and Ỹ , the distribution of X0

can be obtained by simple deconvolution of the (observed) distributions of R0 and Ỹ .

6.2 Estimation

In our empirical application, tracts differ in observed dimensions (available to all bidders in

the sale booklet). We control for this observed common component of heterogeneity in an

initial step. The rest of the estimation approach follows the steps of the identification. The

number of bidders is fixed to n.

1. Account for observed auction heterogeneity.

The estimation procedure assumes that the data available is from auctions of ex-ante

identical tracts. This assumption is not valid in our setting, because tracts differ in

dimensions which are public information and observed by the bidders before submitting

their bids (i.e., available in the sale booklet). This public information will enter not

29The choice R0 = X0Ỹ is also consistent with the fact that the seller never revises up, that is B(1) ≥
R0 ⇒ B(1) ≥ R1, where B(1) is the highest bid. For certain specification of the function R1, the choice of

R0 = X0Ỹ solves R0 = R1(X0, Ỹ , R0). In Remark 1 of Appendix A, we characterize the family of functions
R0 that are consistent with the aforementioned revision pattern.
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only a bidder’s private value of winning the tract but also his belief about other bidders’

values.

We follow the approach of Balat et al. (2016) to account for auction-specific hetero-

geneity. Their approach leverages the separability of common observable component

from the bidder-specific and common unobserved heterogeneity components of bids.

Let the seller’s appraisal value in auction k be

ỹk = Γ(uk)ŷk

where Γ(uk) is a function of the vector of observed auction characteristics uk for auc-

tion k reported in the sale booklet and ŷk is the seller’s noisy estimate of unobserved

heterogeneity. Similarly, let the value of bidder i in auction k be30

vik = Γ(uk)v̂ik

By multiplicative separability (Proposition 1), the corresponding bid of bidder i in

auction j satisfies

bik = Γ(uk)b̂ij

Assumption 2 (Common observed heterogeneity). The observed common auction

heterogeneity component enters identically into bidders and seller’s values.

Assume the following parametric specification: Γ(uk) = exp(u′
kδ).

31 We run a pooled

first-stage regression, fixing the number of bidders, of the dependent variables zik ∈
{bik, ỹk} on observed tract characteristics

log zik = u′
kδ + σik (3)

where zik denotes the bid of bidder i in auction k and the seller’s appraisal value and

σik is the error term. uk include variables for tract surface, number of trees, number of

poles, volumes per species, herfindhal index, sale dummy, order of the tract within the

sale, and categorical variables (type of forest, type of cut, grapeshot damage, owner,

type of landing area). All continuous variables are in logarithm. We recover the

residuals log(b̂ik) = log(bik) − u′
kδ̂ (for the bidders) and log(ŷk) = log(ỹk) − u′

kδ̂ (for

30Although the same function Γ(uk) enters both bidder and seller’s valuation and appraisal, the residuals
ŷk for the seller’s appraisal value still contain the measurement error S, whereas the bidders’ residual values
v̂ik do not.

31The log-linear relationship allows us to account for the skewness of bids and appraisal value expressed
in nominal terms and obtain residuals symmetrically distributed around zero.
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the seller). We refer to the residuals (b̂ik, ŷk) as homogenized bids and appraisal values

respectively.32

2. Separate the unobserved heterogeneity component from the bidder-specific component

and seller’s signal. We use the fact that homogenized bids and estimates obtained from

the previous step are multiplicatively separable in the common unobserved component

Y .

log(b̂ij) = log yj + log β(xij) and log(ŷj) = log yj + log sj

where β(xij) is the idiosyncratic component of bids attributable to variation in bidder’s

private valuations and sj is the realization of the seller’s signal in auction k. The joint

characteristic function of an arbitrary bid and appraisal value (in logs) can be estimated

as

Ψ̂(t1, t2) =
1

n×m

∑
i,j

exp(it1 log(ŷj) + it2 log(b̂ij))

where n is the number of bidders and m is the number of auctions (with n bidders).

Next, the characteristic functions of the marginal distributions (log(Y ), log(S), log(A))

can be recovered as

Φ̂log(Y )(t) = exp

(∫ t

0

Ψ̂1(0, u2)

Ψ̂(0, u2)
du2 − itE[log(S)]

)

Φ̂log(S)(t) =
Ψ̂(t, 0)

Φ̂log(Y )(t)
and Φ̂log(A)(t) =

Ψ̂(0, t)

Φ̂log(Y )(t)

where Ψ̂1 is the derivative of the joint characteristic function with respect to its first

argument. The normalization E[log(S)] = 0 is first imposed.

Densities are recovered using the inverse Fourier transform

f̂log(Z)(z) =
1

2π

∫ T

−T

d(t) exp(−itz)Φ̂log(Z)(t)dt (4)

where Z ∈ {A, Y, S}, T is a smoothing parameter, and d(t) is a damping function (the

choice of T and d(t) are discussed at the end of this section).

32Assumption 1 and Assumption 2 imply that bids and reserve price scale linearly in Γ(uk) and y. This
ensures that the homogeneization approach used here would remain valid in auction markets where the
reserve price is binding and only some bids are observed. Indeed, in such instances, the screening threshold
would not depend on uk. We thank a referee for pointing this out.
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Finally, the densities of de-logged variables Z are recovered as

f̂Y (y) =
f̂log(Y )(log(y))

y
, f̂S(s) =

f̂log(S)(log(s))

s
, ĝA(a) =

ĝlog(A)(log(a))

a

3. Estimate the probability of winning conditional on Y = 1. From Equation (2) and

Lemma 2, the probability of winning conditional on Y = 1 can be estimated from

the unconditional probability of winning P (ωi), the distribution of residualized bids

conditional on winning B̂i|ωi and the distribution of Y . From Equation (2), we define

an estimator of the conditional probability of winning with a bid a as

ĝA(a|ω̃i)P̂ (ω̃i)

ĝA(a)
(5)

where ĝA(a) is estimated in the previous step and P̂ (ω̃i) can be estimated directly from

the data as P̂ (ωi). The distribution of ĝAi
(a|ω̃i) is obtained from the deconvolution

of the estimated distribution of B̂i|ωi and the estimated distribution of Y . Denote

L = B̂i|ωi, with c.d.f FL(b) ≡ P̂ (B̂i ≤ b|ωi), and Q̂log(L)(p) the quantile function of the

random variable log(L). The characteristic function of log(L) is estimated as

Φ̂log(L)(t) =

∫ 1

0

exp(itQ̂log(L)(p))dp

Next, from log(L) = log(M)+log(Y ), the characteristic function of log(M) is estimated

from knowledge of the characteristic functions of log(L) and log(Y ):

Φ̂log(M)(t) =
Φ̂log(L)(t)

Φ̂log(Y )(t)

The density and cumulative distributions of M are recovered from Φ̂log(M)(t) (by the

inversion formula, as in step 2). Finally, denote by F̂W (a) the estimated probability of

winning conditional on Y = 1.33

4. Recover the distribution of idiosyncratic valuesXi and equilibrium bid function. Condi-

tional on Y = 1, an estimate of the inverse bid function is obtained from the first-order

condition

x = ξ̂(a) = a+
F̂W (a)

f̂W (a)

33The probability P̂ (ω̃i|Ai = a) is defined on the support of Ai. The boundaries of this support are
estimated as described at the end of this section.
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Denote by α̂ = ξ̂−1 the corresponding estimate of the equilibrium bid function.

Finally, the distribution of private values is estimated by applying the distribution of

bids (conditional on Y = 1), obtained in step 2, to the equilibrium bid function.

F̂X(x) = ĜA(α̂(x))

Confidence intervals can be computed for all inferred values by bootstrap sampling at

the auction level.

Practical considerations. A number of practical issues need to be addressed to perform

the previous estimation. To implement the inverse Fourier transform (Equation (4)), we

use a damping function to control fluctuations in the tail of the characteristic functions.

Following Diggle and Hall (1993), we use the function

d(t) = max

(
0, 1− |t|

T

)
For each random variable in {A, Y, S}, the smoothing parameter T is chosen to match

empirical moments of these variables. We use the first and second moments:

µ̂LS = 0 , µ̂LY = log(ŷk) , µ̂LA = log(̂bik)− µ̂LY

σ̂2
LA = σ̂2

LB − σ̂2
LY , σ̂2

LS = σ̂2
LỸ

− σ̂2
LY , σ̂2

LY =
σ̂2
LBi

+ σ̂2
LBj

− σ̂2
LBi−LBj

2

For each random variable Z ∈ {A, Y, S}, T is chosen to minimize

(µ̂LZ − µ̃LZ)
2 + (σ̂2

LZ − σ̃2
LZ)

2

σ̂2
LZ

+ Pχ{non−monotonic}

where Pχ{non−monotonic} is a penalty function that deter the search from candidate smooth-

ing parameters yielding negative values for the density of LZ. In practice, we obtain values

of T for {Y, S,A} equal to 14.0, 12.5, and 15.5 respectively.

Density estimates from the procedure in Step 2 suffer from being imprecise in the tails

in finite samples. This leads to small positive densities being inferred over a very wide

support. This problem is dealt with as follows: the support boundaries of the random

variables obtained in step 2 ([a, a], [y, y], [s, s]) are estimated by combining the support of

variables observed in the data and restrictions imposed by the model. In particular, we use

the following restrictions
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log(̂b) = log(a) + log(y) and log(̂b) = log(a) + log(y)

log(ŷ) = log(s) + log(y) and log(ŷ) = log(s) + log(y)

max
i,j,k

{log(̂bik)− log(̂bjk)} = log(a)− log(a)

∫ log(s)

log(s)
y · flog(S)(y)dy = 0 (E[log(S)] = 0)

(6)

where (̂b, b̂) and (ŷ, ŷ) are estimates of the support boundaries of homogenized bids and

seller’s appraisal values. This system of equations uniquely determines the unknown support

boundaries [a, a], [y, y], and [s, s] (see Appendix A.2 in Krasnokutskaya (2011)). Estimates

of the support boundaries of the normalized bids and appraisal values and the normalization

E[log(S)] = 0 allow us to recover these unknowns.

6.3 Estimation results

The results presented below correspond to auctions that attracted three bidders (283 tracts

in total). The results for different values of the number of bidders are qualitatively similar.

The cumulative distributions of unobserved auction heterogeneity, seller’s signal and

private valuation, and individual bid component are represented in Figure 3. The distribution

of unobserved heterogeneity has a mean of 1.09 and a standard deviation of 0.32. After

incorporating observed auction heterogeneity (Γ(uk)), the mean and standard deviation of

the common component are equal to 17, 333e and 26, 224 e, respectively. The recovered

distribution for the seller’s signal (or measurement error) has a standard deviation of 0.24.

Taken together with the standard deviation in unobserved heterogeneity, the seller’s appraisal

value is a relatively noisy signal of the true realization of unobserved heterogeneity.

The distribution of the seller’s private value indicates that the ex-ante secret reserve price

is on average equal to 0.84 of the ex-ante appraisal value. One reason is the ONF discounting

the value of keeping the item until the next sale season.

The variance of bidders’ values (Xi×Y ) can be decomposed into the variance due to the

unobserved auction heterogeneity and the variance due to idiosyncratic private value.

Var(XY ) ≈ E[X2]Var(Y ) + E[Y 2]Var(X)

Unobserved auction heterogeneity explains 36% of the variance in bidder values. Failing

to control for this unobserved common component would have resulted in over-estimates of
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Figure 3: Cumulative distribution functions of the seller’s private value, the unobserved auc-
tion heterogeneity component, the seller’s ex-ante signal, and the individual bid component.
The dotted lines show pointwise 95% confidence intervals estimated through a bootstrap
procedure.

the variance of idiosyncratic private values.

Figure 4 shows the estimated equilibrium bid function (conditional on Y = 1) and the

distribution of individual private valuation. The estimated bid function is used to compute

mark-downs: bidders shade their bids by 15.6% on average below their value.

29



Figure 4: Estimated bid function conditional on Y = 1 (left) and estimated cumulative dis-
tribution of bidders’ private values (right). The dotted lines show pointwise 95% confidence
intervals estimated through a bootstrap procedure.

6.4 Specification tests

The model with unobserved heterogeneity implies a number of testable implications. We

perform these specification tests here.

Test against APV models. Both the model with unobserved heterogeneity and the APV

model imply correlation in bids. However, the unobserved heterogeneity model implies that

bids are conditionally independent, whereas most APV models imply that bids are affiliated

(see Krasnokutskaya (2011)).

To distinguish the model with unobserved heterogeneity from an APV model, we test

for the independence of bid ratios formed from a quadruple of bids submitted in the same

auction.34 Under unobserved heterogeneity, the pairwise ratios should be independent. This

property does not hold for a large class of APV models.35 Figure 5 (top) shows density

estimates as well the correlation between pairwise bid ratios (within-auction). The Spearman

(rank) correlation coefficient equals 0.049 and the p-value for the test of zero rank correlation

equals 0.27, so that the null hypothesis (of no monotone dependence between the two bid

ratios) cannot be rejected.36 We interpret this finding as strong evidence in favor of the

34We use four-bidder auctions to conduct this test.
35Because the set of affiliated distribution includes the set of conditionally independent distributions, this

test has no power against certain APV models, as noted by Kranokutskaya (2011).
36The Pearson correlation coefficient equals 0.03 and the p-value for the test of zero correlation is 0.49.
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model with unobserved heterogeneity against APV models. We perform the same exercise

but using a bid ratio B1

B3
and a bid to reserve price ratio B3

R0
(within-auction) as shown in

figure Figure 5 (middle). If the unobserved component enters linearly into the reserve price,

the two variables should again be independent. The Spearman (rank) correlation coefficient

equals −0.015 and the p-value for the test of zero rank correlation equals 0.729, so that the

null hypothesis cannot be rejected.

Test against IPV models. Under an IPV model, bids should be independent across bidders,

conditional on observed auction characteristics. We construct residual bids by regressing

bids on a linear index of observed auction characteristics (as in step 1 of the estimation

procedure). Figure 5 (bottom) shows density estimates as well as the correlation between

residualized bids (within-auction). The Spearman (rank) correlation coefficient equals 0.726

and the p-value for the test of zero rank correlation equals 0.0, so that the null hypothesis

of no correlation can be rejected.37 This provide evidence against an IPV model, i.e., bids

are correlated through an unobserved common component.

Other testable implications. The primitive density functions can be estimated using alterna-

tive pairs of variables.

First, Kotlarski’s result can be applied to a pair of bids (bik, bjk) submitted in the same

auction (as in the procedure of Krasnokutskaya (2011)). Since log(Bik) = log(Y )+ log(Aik),

the distribution of A and Y can be recovered. If the signal S is independent of Xi and Y ,

then the distributions recovered should be identical to the ones obtained using a pair of bid

and appraisal value (bik, ỹk).

Figure 6 presents density estimates under the alternative estimation approach along with

the estimates using the baseline approach. In both cases, we impose the restriction that

E[log(A)] = 0. We test for the equality of each pair of density functions.38 The p-values

for the test of equality of the densities across the two estimation approaches are 0.10, 0.91,

and 0.87 respectively. We cannot reject the null of equality of the three densities at the 5%

confidence level.

Second, Kotlarski’s result can be applied to a pair of bid ratios ( b1k
b3k

, b2k
b3k

) (for auc-

tions with at least three bidders). Since log(B1k

B3k
) = log(A1k) − log(A3k) and log(B2k

B3k
) =

log(A2k)− log(A3k), the distribution of A can be recovered. If Y is independent of Xi, then

the distribution of normalized bids recovered should be identical to the one obtained using

a pair of bid and appraisal value (bik, ỹk).

Figure 7 presents density estimates under the alternative estimation approach along with

the estimates using the baseline approach. In both cases, we impose the restriction that

37The Pearson correlation coefficient equals 0.724 and the p-value for the test of zero correlation is 0.0.
38We implement the test proposed in Appendix A.3 in Krasnokutskaya (2011).
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Figure 5: Scatter-plots and density estimates of (within-auction) two bid ratios (top), one
bid ratio and bid to reserve price ratio (middle), two residual bids (bottom), all in logs.
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Figure 6: Estimated densities of the unobserved auction heterogeneity component and the
individual bid component using (1) the joint distribution of bid and appraisal value, and (2)
the joint distribution of two bids. The dotted lines show pointwise 95% confidence intervals
for (1), estimated through a subsampling procedure.

E[log(A)] = 0. The p-values for the test of equality of the densities across the two estimation

approaches are 0.85, 0.90, and 0.88 respectively. We cannot reject the null of equality of the

three densities at the 5% confidence level.

Taken together, the specification tests show that the data supports (1) the presence of

unobserved heterogeneity entering as a separable component into bidders’ values and the
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Figure 7: Estimated densities of the individual bid component using (1) the joint distribution
of bid and appraisal value (one estimate), and (2) the joint distribution of two bids ratios
(three estimates). The dotted lines show pointwise 95% confidence intervals for (1), estimated
through a subsampling procedure.

seller’s ex-ante appraisal value, (2) the mutual independence assumption between compo-

nents entering bidders and seller’s valuations.
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7 Counterfactual analysis

In this section, the estimated distributions of values, seller information, observed and unob-

served heterogeneity are combined to simulate a set of auctions under counterfactual infor-

mational structures and alternative reserve price policies. The outcomes of interest are the

expected surplus and revenue per auction. We compare these outcomes to the seller current

reserve price policy (i.e., a secret reserve price revised ex-post), denoted “baseline” hereafter.

For the baseline policy, we use the estimated equilibrium bid function and revision rule.39

7.1 Simulation of counterfactuals

First-best outcome. We start by computing surplus and revenue under the assumption

that the seller has perfect information about the unobserved auction heterogeneity compo-

nent Y and announces a public reserve price equal to their true reservation value X0×Y . Let

RFB
0 denote this reserve price. Under symmetry of bidders’ private values, the equilibrium

bid function if Y = 1 has a simple closed-form expression

β(x) = x− 1

FX(x)n−1

∫ x

rFB
0

FX(u)
n−1du.

This benchmark gives an upper bound on attainable surplus, because the auction is ex-

post efficient. Additionally, the benchmark allow us to determine the benefit for the ONF

of collecting more precise signals about unobserved tract heterogeneity.40

Alternative reserve price policies. We compare revenue and surplus under the current

“baseline” policy to alternative reserve price rules, namely: (a) no reserve price, (b) a public

reserve price, (c) secret reserve price, revised based on a convex combination of bids (mean)

and appraisal value. These alternative policies are implemented as follows.

(a) Under symmetry of bidders’ private values, the equilibrium bid function with no reserve

price has a standard closed-form expression. Multiplicative separability of individual

bid component and unobserved heterogeneity holds as in the model of Krasnokutskaya

(2011).

(b) Denote by RP
0 the public reserve price announced by the seller. Due to bid shading

in the first-price format, auction outcomes under a public and a (fixed) secret reserve

39Although the (binary) decision to accept the highest bid is non-parametrically identified, due to the
curse of dimensionality we use the parametric specification shown in Table 5.

40We note that the first-best outcome is in fact implementable if the seller can gather reports about Y
from each bidder in addition to their bids and incentivize them with large punishments if their answers do
not coincide. In at least one equilibrium of this game, they will always report Y truthfully. The existence of
efficient mechanisms in general auction settings was argued, for example, in McLean and Postlewaite (2004).
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prices set both to RP
0 differ.41 To restrict attention to the impact of the seller’s learning

from the bids, we assume that the public reserve price is set such that the allocation

rule is identical to that generated by a fixed secret reserve price of R0 = X0Ỹ (i.e.,

with no ex-post revisions). Details are included in Appendix D.1.42

(c) Under the last counterfactual policy, the ex-post reserve price is constructed as a convex

combination of bids and appraisal value

R1(X0, Ỹ ,b; γ) = X0

(
γb+ (1− γ)Ỹ

)
(7)

where b is the average bid received and γ ∈ [0, 1]. The function R1 satisfies the

homogeneity assumption (Assumption 1.1). Policy (c) coincides with policy (b) with a

weight of 1 on the appraisal value. The interim expected profit of bidder i is given by

π(xi, y; bi) = (xiy − b)P (bi ≥ R1(X0, Ỹ , bi,B−i; γ) ∩ bi ≥ Bj, j ̸= i | Y = y) (8)

A symmetric Bayes-Nash equilibrium is characterized by a function βy(.) such that

π(xi, y; bi) is maximized when bi = βy(xi), bj = βy(xj) for j ̸= i (for every i ∈ {1, ..., n}
and every realization of Xi). From the perspective of bidder i, the revision rule in

Equation (7) depends on the equilibrium played through the distribution of B−i. An

equilibrium is found numerically by best-response iteration. The details of this proce-

dure are presented in Appendix D.2.

7.2 Counterfactual results

Figure 8 compares the equilibrium bid function under the current reserve price policy (base-

line) to the equilibrium bid functions under policies (a), (b), and (c). In the latter, the cases

with γ ∈ {0, 0.5, 1} are plotted. The extreme cases (γ equals 0 or 1) provide upper and lower

bounds for the equilibrium bid function under intermediate values of γ (γ ∈ (0, 1)).

The left panel shows that the equilibrium bid function under the current baseline policy

(secret reserve price, ex-post revised) is close to the bid function with no reserve price,

indicating that revisions relax any ex-ante commitment of the seller.43 The right panel

41A secret reserve price excludes more bidder types than an otherwise identical public reserve price. Indeed,
under a public reserve price of r, the item is allocated to the highest bidder with valuation greater or equal
to r. Under a secret reserve price of r (with no ex-post revisions), the item is allocated to the highest bidder
with bid greater or equal to r. Due to bid shading the latter marginal bidder must have a valuation strictly
greater than r.

42The (binding) public reserve price is separable in Y , therefore, multiplicative separability of the equilib-
rium bid function still holds.

43A public reserve price clearly leads to more aggressive bidding than with no reserve price. A secret
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Figure 8: Equilibrium bid functions conditional on Y = 1 under the baseline and counter-
factual reserve price policies. On the right panel, the topmost dashed function corresponds
to γ = 0, while the bottom dashed function corresponds to γ = 1.

shows that as γ goes to 1, bidders bid less aggressively. This is consistent with the fact that

as more weight is put on the average bid (in setting the ex-post reserve price), the highest

bidder faces a lower ex-post reserve price.

Table 6 summarizes the results of the counterfactual analysis. The table records the

expected surplus and revenue per auction under the current baseline and counterfactual

reserve price policies. Average revenue and surplus per auction under the current policy are

13, 216e and 17, 380e. Learning the realization of unobserved auction heterogeneity would

allow the seller to increase revenue by 5.77% and surplus by 5.22% (first-best outcome).44

Announcing a public reserve price increases revenue by 5.86% and reduces surplus by 2.34%.

Without a reserve price, surplus would increase by 3.35% whereas revenue decreases by only

1.46%. When employing a reserve price, the fraction of tracts sold is highest under the

first-best, followed by the baseline reserve price policy and finally the public reserve price

policy.

reserve price that depends on the bids, on the other hand, has an ambiguous effect on equilibrium bidding
relative to the no reserve price case. See Appendix C for a characterization of equilibrium bidding strategies.

44It is worth emphasizing that both surplus and revenue increase in the first-best outcome. Surplus
increases because we assume the seller has full information and can set the public ex-post efficient reserve
price. Revenue increases because the seller announces a public reserve price (i.e., there are no revisions) that
induces more aggressive bidding.
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Baseline Public Res. Price No Res. Price First-Best

Revenue per auction (mean, in 2003 e) 13,216 13,991 12,919 13,961

95% CI [12,029, 14,392] [12,639, 15,335] [11,721, 14,221] [12,733, 15,224]

Change relative to baseline (in %) 0 5.86 -1.46 5.77

Surplus per auction (mean, in 2003 e) 17,380 16,984 17,850 18,164

95% CI [14,810, 20,517] [14,392, 19,989] [15,124, 21,367] [15,482, 21,415]

Change relative to baseline (in %) 0 -2.34 3.35 5.22

Fraction of tracts sold (mean) 0.77 0.61 1 0.85

Table 6: This table shows counterfactual outcomes under the different reserve price policies
and the first-price auction format. The “baseline” correspond to the current reserve price
policy used by the ONF. The first-best outcome corresponds to a situation where the ONF
faces no uncertainty about Y and sets the ex-post efficient public reserve price.

Figure 9 shows (percentage) change in surplus and revenue relative to the baseline for

the counterfactual reserve price policies. In particular, we plot the change in outcomes from

the adoption of the ex-post reserve price given by policy (c) for different values of γ ∈ [0, 1].

When γ equals zero, the ex-post reserve price yields the same outcomes as a public or

secret reserve price (with no revisions).45 As γ goes to one, the ex-post reserve price incor-

porates information from the bids to update estimates of Y . Allocative efficiency increases.

Since bidders face a lower reserve price (in expectation), bidding is less aggressive and rev-

enue decreases. There is an interior value of the parameter (γ = 0.87) that maximizes surplus

per auction. Under this value, the seller efficiently combines information from their appraisal

value and the bids (within the class of learning rules given by (c)).

The surplus gap between the public reserve price and the first-best is reduced by 84% by

the adoption of a secret reserve price policy with efficient learning (γ = 0.87). Under efficient

learning, surplus increases by 5.84% and revenue decreases by 4.92% compared to outcomes

under a public reserve price. The seller trades off greater allocative efficiency against lower

revenue per auction.

7.3 Robustness checks

Dynamics. Tracts are auctioned sequentially within a sale and the ten sales are held se-

quentially over two months. We consider, therefore, whether there are any dynamic effects

within and across sales given that our structural model is static and assumes independence

across auctions and sales. To choose the ordering of tracts within a sale, the ONF picks the

first tract randomly and starting from it, tracts are auctioned by alphabetical order.

45Recall that the public reserve price is set to generate the same allocation rule as a (fixed) secret reserve
price of R0.
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Figure 9: Counterfactual (expected) changes in surplus and revenue per auction from adop-
tion of alternative reserve price policies. The baseline corresponds to the current policy used
by the ONF. The public reserve price corresponds to the case where the ex-ante reserve
price is announced (and not revised). The first-best corresponds to the full information

case. Black dots corresponds to an ex-post reserve price (learning) R1(X0, Ỹ ,b; γ) given by
Equation (7) where γ in [0, 1] for 20 points on the interval. The red curve is a smoothed fit
of this frontier.

Within-sale dynamics can be assessed by examining whether tract order affect firms’ bid-

ding behavior. We regress the (log) average bid per auction on observed tract characteristics

and tract order (in the sale), for each sale separately. Figure 10 (left panel) shows the coeffi-

cient estimate of the tract order. Except for sales {8, 10}, tract order is not correlated with

bids. Excluding these sales from the analysis does not qualitatively affect our counterfactual

results.

Across sale dynamics are assessed by examining sale dummies in the regression of bids on

tract characteristics (all sales are pooled). Figure 10 (right panel) shows the difference in the

(log) average bid per auction between sale i ̸= 6 and the reference sale (sixth), controlling

for tract characteristics. Notably, bids are on average higher in the first two sales of the

bidding season. Restricting our sample to later sales or intermediate sales (e.g., 3 to 8) does

not qualitatively affect our results.

Endogenous participation. Next, we discuss how bidders’ participation may affect our results.
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Figure 10: The left panel shows the effect of tract order (within sale) on the (log) average bid
submitted, controlling for observed auction heterogeneity. The right panel shows estimates
of sale dummies in the regression of (log) average bid on observed auction heterogeneity.
The omitted category is the sixth sale.

In our setting, a bidder “enters” a given auction when they cruise the auctioned tract (cruises

account for most of entry costs).46 Before making their entry decision, potential bidders have

access to observable tract characteristics reported in the sale booklet and private signals

correlated with their private valuations for the tract. After entering, bidders observe the

unobserved auction heterogeneity component and their private valuation.47

Endogenous participation can affect our counterfactual predictions (in particular, re-

garding the effect of announcing a public reserve price) if a reserve price is announced before

bidders make their entry decisions (e.g., the reserve price is reported in the sale booklet).

The ex-ante effect on surplus and revenue is, however, ambiguous. Announcing a public

reserve price may increase participation for tracts with below-average (seller) reservation

value, but reduce participation for tracts with above-average (seller) reservation value.

If the reserve price is publicly announced only after bidders make their entry decisions

(e.g., the day of the sale), then allowing for endogenous entry does not alter our counter-

factual predictions. Indeed, with such a disclosure policy, bidders condition on the same

46According to industry professionals, firms which cruise a tract typically bid in the auction. Although
we cannot test this assumption using our data, Athey and Levin (2001) also report similar evidence for the
U.S. Forest Service auctions.

47Grundl and Zhu (2018) show that, in this setting, (i) the value distribution of entrants conditional on Y
is independent of the number of entrants; (2) if bidders do not observe Y before entering, then separability
of Y and the private valuation of potential bidders carries to entrants.
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information when making their entry decision (i.e., tract characteristics reported in the sale

booklet and some private signals about their valuations) as under the secret reserve price

policy we consider.

Asymmetries between firms. The estimated model assumes bidders are symmetric. We

investigate whether our results are robust to this assumption. In the auction data set,

each firm is identified by a bidder code which allows us to compare participation rates across

bidders.48 Bidders participate on average in 27 auctions over the sale season (with a standard

deviation of 37).

To identify bidder types, we group bidders by decile of the distribution of participation.

Then, bids are regressed on tract characteristics and dummies for each decile (i.e., ten

dummies for whether bidder i is in decile k ∈ {1, . . . , 10} of the distribution of participation).

The results are shown in the left panel of Figure 11. We identify two types of bidders:

regular bidders corresponding to the top two deciles of the participation distribution and

fringe bidders. There are 43 regular bidders who participate on average in 84 auctions per

bidder, and 163 fringe bidders who participate on average in 11 auctions per bidder.
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Figure 11: The left panel shows the coefficients on the dummies for each decile of the
participation distribution in the regression of average bid on observed auction heterogeneity.
The right panel shows estimates of sale dummies in the probit regression of the ONF’s
decision to revise the reserve price down on observed auction heterogeneity. The omitted
category is the first sale.

48Firm names, which would allow to recover other bidder-specific covariates such as mills’ locations, are
unfortunately not disclosed by the ONF.
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The model is estimated allowing the distribution of private values Xi to differ across

regular and fringe bidders. We focus on three-bidder auctions with two regular and one fringe

bidder. The estimation approach is modified to account for different first-order conditions

across bidder types in step 4.49

The results are shown in Figure 12. The top left panel shows the empirical cumulative

distribution of bids (in logarithm, residualized following step 1). Regular bidders tend to

bid slightly more aggressively (i.e., higher) than fringe bidders but the difference is relatively

small. The top right and bottom panels show the estimated densities of normalized bids

(recovered from the deconvolution method) and private values for regular and fringe bidders.

We find that the equilibrium bid functions (in auctions with two regular and one fringe

bidder) differ by at most 1%. Taken together, these findings indicate that although firms

differ in their participation decisions, this does not translate into significant variation in

private valuations and equilibrium bidding patterns.

Revenue constraints. The ONF must cover its operating costs using proceeds from timber

auctions. Therefore, instances where the ONF revises its ex-ante reserve price down may

be reflecting revenue constraints rather than learning from the bids about unobserved tract

characteristics.50 While discussions with ONF officers indicate that these revenue constraints

are in general not binding, we examine whether revision decisions differ across the ten sales

over the bidding season. If revenue constraints were important, we might expect the ONF

to revise down more often near the end of the sale season (to achieve budget balance). The

results are shown in the right panel of Figure 11. Except in the sixth sale in which the ONF

was less likely to revise its reserve price, revision decisions appear fairly similar across sales.

Variation in the number of bidders. Table 3 shows that the number of bidders per auction

is correlated with some of the tract characteristics. Given Assumption 2, this correlation

might call into question the assumption of no selection of bids based on observables (i.e.,

full participation). We investigate whether this pattern can be explained by variation in the

number of active firms across different locations of the Grand Est region; and these locations

being correlated with tract-level observed characteristics (e.g., grapeshot damage).

Although we do not observe the exact location of mills, we do have information on the

forest to which each tract belongs. There are 789 different forests in our sample, with on

average 2.88 tracts per forest. The regression of the (log) number of participants on forest

fixed effects yields an (adjusted) R2 of 41%. Including tract-level covariates, in addition to

49In implementing the deconvolution (step 2 in the estimation approach), we use the joint distribution of
a regular and fringe bid per auction and impose the normalization E[log(A1)] = 0 for fringe bidders.

50The constraint can stipulate, for instance, that total revenue over all auctioned tracts must be greater
or equal to the ONF’s operating costs for that year.
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Figure 12: Empirical cumulative distribution of bids (top left), the estimated densities of
normalized bids (top right), and the estimated densities of private values (bottom) for regular
and fringe bidders. The red vertical lines represents the estimates of support boundaries.

the forest effects, increases the R2 to 54%. This indicates that the spatial distribution of

tracts relative to firms explain a significant fraction of participation decision; although we

cannot completely rule out covariates’ explanatory power (the effects of tract characteristics

are however smaller and/or insignificant once forest FE are included).

As a robustness check, we conduct our estimation and counterfactual exercises including

forest fixed effects in the first-step homogeneization of bids (the fixed effects are excluded
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from the residualized bids). The sample used contains all tracts belonging to a forest with

more than one auctionned tract. The results are quantitatively similar despite relying on

the smaller sample size.

8 Conclusion

The common use of secret reserve prices in auction markets has been a persistent empirical

puzzle. This paper investigates a novel rationale for their use. If the seller is less informed

than the bidders about the underlying heterogeneity of the auctioned item, she may learn

from the bids and adjust her initial appraisal value. Doing so allows the seller to allocate

the item more efficiently, albeit at a cost of lower revenue.

The French timber industry provides an empirical setting where this type of information

asymmetry between bidders and seller is important. Additionally, the ONF uses a secret

reserve price which can be revised down if no bid is above it. We build a model of bidding

in first-price auctions that captures these two features and show that the model is identified

from data on bids, allocation rule, and the ONF’s appraisal value.

Using the estimated model, we conduct counterfactual analysis of alternative reserve price

policies. The results show that the seller would benefit substantially from acquiring more

precise signals about unobserved auction heterogeneity. Using the information conveyed by

bids allows the seller to improve allocative efficiency. However, learning from the bids induces

less aggressive bidding and lower revenue by relaxing the seller’s commitment power (or

conversely increasing bidders’ market power). From a broader perspective, the results speak

to the importance of a seller’s appraisal technology in auction markets. In the context of the

ONF’s timber auctions, the seller uses the information revealed by the bids to supplement

their imperfect appraisal of tracts.

Finally, we note possible extensions to the current framework. Alternative approaches

for dealing with unobserved heterogeneity can be used. For instance, one can relax the

separability assumption between unobserved heterogeneity and private value components, if

the former is assumed to be discrete. The misclassification approach of Hu et al. (2013) can

then be employed (e.g., using a triplet formed of two bids and the appraisal value for a given

auction). Our identification strategy (Step 2, in particular) can also be applied to other

non-standard auction rules. For instance, in Arozamena and Weinschelbaum (2009) and

Chiang and Sa-Aadu (2014), a favored player can take action upon seeing other players bids

(e.g., right of first refusal). The event of being out-bid by a favored player is to some extent

similar to how the ex-post reserve price acts in our model, and the equilibrium strategies

may be identified in a similar fashion.
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A Proofs

A.1 Proof of Lemma 1 and Remark 1

Lemma 1. Under Assumption 1, there exist unique functions R0(x0, ỹ) and R−i1(x0, ỹ,b−i)

defined as solutions to R1(x0, ỹ, R0, . . . , R0) = R0 and R1(x0, ỹ,b)|bi=R−i1
= R−i1. These

functions satisfy

1. bi ⩾ R0(x0, ỹ), bi ⩾ maxj ̸=i bj ⇒ bi ⩾ R1(x0, ỹ,b)

2. bi ⩾ R1(x0, ỹ,b) ⇔ bi ⩾ R−i1(x0, ỹ,b−i)

for all i and (x0, ỹ,b−i). Moreover, R−i1 is continuous in all arguments and homogeneous of

degree 1 in bids and appraisal value.

Proof . Homogeneity of degree 1 implies, via differentiation with respect to λ, that

∑
i

∂ logR1

∂ log bi
+

∂ logR1

∂ log ỹ
= 1 (9)

To prove the existence and uniqueness of R0, we fix x0, ỹ and define the function

h(z) = logR1(x0, ỹ, b, . . . , b)|b=ez

on the real line. Note that, by definition, R0 is equal to the exponential of the solution to

h(z) = z. We therefore need to show that there exists a unique solution to this equation on

the real line.

From Equation (9), the total derivative of logR1(x0, ỹ, b, . . . , b) with respect to log b is

bounded

∂h(z)

∂z
=

d logR1(x0, ỹ, b, . . . , b)

d log b
|b=ez = 1− ∂ logR1(x0, ỹ, b, . . . , b)

∂ log ỹ
|b=ez < 1,

because R1 is strictly increasing in ỹ and both R1 and ỹ are positive. Note that, since R1

is continuous and positive, there exist z such that h(z) > z. Moreover, by Assumption 1.2

there exist z such that h(z) < z. Therefore, h(z) crosses the 45 degree line at least once in

the range [z, z] by the Intermediate Value Theorem. Finally, because ∂h(z)
∂z

< 1, the crossing

is unique.

To prove the first implication, observe that for any value z to the right of the crossing,
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h(z) is below the 45 degree line. Therefore, setting z = b(1) := maxj bj, we have

R0(x0, ỹ) < b(1) ⇒ logR0(x0, ỹ) < log b(1) ⇒

logR1(x0, ỹ, e
log b(1) , . . . , elog b(1)) = h(log b(1)) < log b(1) ⇒

R1(x0, ỹ, b(1), . . . , b(1)) < b(1) ⇒ R1(x0, ỹ,b) < b(1),

by strict monotonicity of R1. That is, b(1) > R0(x0, ỹ) implies b(1) > R1(x0, ỹ,b) for all

possible b, such that b(1) = maxj bj.

To prove the existence of R−i1, we fix x0, ỹ,b−i and define the function

g(z) = logR1(x0, ỹ,b−i, bi)|bi=ez

on the real line. By definition, R−i1 is the exponential of the solution to g(z) = z. We

therefore need to show that there exists a unique solution to this equation on the real line.

Using the same arguments as for h(z), we can show that the function g(z) crosses the

45 degree line at least once. It only remains to show that ∂g(z)
∂z

< 1. However, Equation (9)

yields

∂g(z)

∂z
=

d logR1(x0, ỹ,b−i, bi)

d log bi
|bi=ez =

1−
∑
j ̸=i

∂ logR1(x0, ỹ,b−i, bi)

∂ log bj
|bi=ez −

∂ logR1(x0, ỹ,b−i, bi)

∂ log ỹ
|bi=log z < 1,

because R1 is strictly increasing in ỹ,b−i and R1, ỹ,b−i are all positive.

The second implication follows from the fact that g(z) crosses the 45 degree line ex-

actly at z = logR−i1(x0, ỹ,b−i). To show continuity of R−i1 and R0, note that they are

unique minimizers of (g(z)− z)2 and (h(z)− z)2 respectively, and thus, are continuous in all

arguments by the Maximum Theorem.

Finally, by homogeneity of degree 1 of R1

bi ⩾ R−i1(x0, ỹ,b−i) ⇔ bi ⩾ R1(x0, ỹ,b) ⇔

bi ⩾ R1(x0, λỹ, λb)/λ ⇔ bi ⩾ R−i1(x0, λỹ, λb−i)/λ.

for all λ > 0. Therefore, R−i1(x0, ỹ,b−i) = R−i1(x0, λỹ, λb−i)/λ, that is, R−i1 is homoge-

neous of degree 1 in bids and appraisal value.

Remark 1. Under Assumption 1, R0 = Ỹ /h(X0) for some function h(.).
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Proof . From the definition of R0 and invoking homogeneity of degree 1, we have

1 = R1(X0,
Ỹ

R0

, 1, . . . , 1).

Since the ex-post reserve price R1 is strictly increasing in the appraisal value, by the Inverse

Function Theorem, there exist a function h such that Ỹ
R0

= h(X0) locally, and therefore also

globally on a compact [x0, x0].

A.2 Proof of Proposition 1

Proposition 1 Under Assumption 1, if α(.) is an equilibrium bidding strategy of the game

indexed by y = 1, then an equilibrium bidding strategy in the game indexed by y, with

y ∈ [y, y], is such that βy(xi) = yα(xi), for all i, and α(x) = x. Moreover, all types with

private value above x have a strictly positive probability of winning.

Proof . Let all but players but i follow the same bidding strategy βy(.) = yα(.). Consider

an auction indexed by Y = y, then the interim expected profit of bidder i, given a bid bi, is

π(xi, y; bi) = (yxi − bi)P (bi ≥ Zy ∩ bi ≥ yAj, j ̸= i|Y = y)

where Zy = R−i1(X0, yS, yA−i). By homogeneity of degree one of R−i1, we have that Zy =

yZ1, therefore

π(xi, y; bi) = y(xi − bi/y)P (bi/y ≥ Z1 ∩ bi/y ≥ Aj, j ̸= i),

= y × π(xi, 1; bi/y)

Clearly, if β1(xi) = α(xi) maximizes π(xi, 1; bi), then βy(xi) = yβ1(xi) also maximizes

π(xi, y; bi), which proves that βy(xi) = yα(xi).

To address the participation and boundary condition, we assume first that all types

participate. Note that in a symmetric equilibrium, it cannot be that α(x) < x or the lowest

type would have an incentive to increase its bid (deviate upwards). In addition, it cannot be

that α(x) > x or the types in the range (x, α(x)) would have a strictly positive probability

of winning with strictly negative profits.

Consider now the situation where a positive measure of types choses not to participate.

Then there is a positive probability that there are no participants in the auction. Since

we model that the seller replaces missing bids with the minimum (among existing) bid,

the non-participating agent with any type x ⩾ x has a positive probability of facing no

opponents, if he chooses to participate. Moreover, if he submits x, he will have a strictly
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positive probability of winning against the ex-post reserve price, as

R1(x0, ỹ, x, . . . , x) < x ⩽ x

by Assumption 1.3. Therefore, there is full participation.

Finally, to show that the probability of winning, given normalized bid a, is strictly positive

for all a > x, recall first that the probability of winning is non-decreasing. We therefore only

have to show that this probability is strictly increasing in the neighborhood of x.

By Assumption 1.3, there is a neighborhood of x0, s, x such that for all x0, s, x in that

neighborhood R1(x0, s, x, . . . , x) < x. Therefore, by continuity of the bidding strategy, for

a normalized bid close to x, the probability of winning against rival bids and the ex-post

reserve price is strictly positive.

A.3 Proof of Lemma 2

Lemma 2. Under Assumption 1, the event ω̃i is equal to the event ωi. The distribution of

M is identified from the deconvolution of the distributions of L and Y .

Proof . The first result is a direct implication of homogeneity of degree 1 of R1 in bids

and appraisal value.

For the second result, note that

P (Bi ≤ b|ω̃i) =

∫
P (AiY ≤ b|ω̃i, Y = y)fY (y|ω̃i)dy

=

∫
P (Ai ≤

b

y
|ω̃i, Y = y)fY (y)dy

=

∫
P (Ai ≤

b

y
|ω̃i)fY (y)dy

(10)

where the second equality is a consequence of Y being independent of ω̃i, and the third

equality is a consequence of Ai being independent of Y conditional on the event ω̃i.Therefore,

the random variable L is the convolution of the random variables M and Y . The latter

variables are independent by construction.

B Institutional details

B.1 Tract characteristics

This section provides a more detailed description of the categorical variables presented in

Table 2.
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The variable “Stand” corresponds to the forest type, which can either be a high forest,

i.e., a forest originating from seed or from planted seedlings and consisting of large, tall

mature trees with a closed canopy; or a coppice forest, i.e., a forest produced from vegetative

regeneration. A coppice forest can be converted into a high forest (“Conversion of a stand”).

A hybrid of high and coppice forests can also be managed (“Coppice with standards”).

The variable “Cut” corresponds to the type of cutting required, which can take many

forms: selection cutting eliminates weaker or low value trees to make space for the remaining

trees, regeneration cutting consists of harvesting older trees to allow the growth of younger

age classes, etc.

The variable “Grapeshot” corresponds to the level of grapeshot damage from artillery

used in WWI. “Landing area” indicates whether a designated space is available for storing

the harvested timber before transporting it to the mill. “Conditions” describes the difficulty

in logging (or cutting) the trees and skidding (or extracting), the process by which the cut

tree is moved through the forest to the landing area.

B.2 Role of the ex-ante reserve price

In our empirical application, the seller sets an ex-ante reserve price R0, that is observed in

the data. Note, however, that from the perspective of the bidders, only the ex-post reserve

price R1 is relevant to their bidding behavior. Indeed, bidder i’s interim profits are given by

(xiy − bi)P (bi ≥ R1(X0, Ỹ , bi,B−i) ∩ bi ≥ Bj, j ̸= i | Y = y)

Why does the seller define an ex-ante reserve price if it is irrelevant to auction outcomes?

This section provides several justifications for the use of the ex-ante reserve price based on

our discussions with ONF officers.

The allocation rule (see Figure 2) reveals that tracts are always sold when the highest bid

exceeds the ex-ante reserve price. Arguably, many combinations of R0 and R1 can generate

this pattern: for instance, the seller could set R0 to an arbitrarily low value (or not define it

at all) and revise more often (via an alternative rule R1) to achieve the exact same allocation

observed in Figure 2. Evidence gathered through discussion with the auctioneer indicate,

however, that the ONF defines an ex-ante reserve price to simplify the revision decision of

the ONF officer conducting the auction. By using the simple rule “accept the maximum bid

if it is higher than R0,” the ONF minimizes the number of instances in which the auctioneer

must incorporate information from the bids and revise their appraisal value (which can be

computationally costly and time consuming). Moreover, the ex-ante reserve price serves as

a reference point that limits, to some degree, the discretion of the ONF officer conducting
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the auction.

Second, as described in Section 3, if all bids are rejected, the ONF announces its ex-

ante reserve price. Therefore, setting R0 before the auction to a sensible value allows the

ONF to reveal its reservation value to the bidders, demonstrating its willingness to sell the

tract (rather than collecting bids without intending to sell, simply to learn about bidders’

willingness to pay, as in the setting studied by Olimov (2013)). Finally, defining an ex-ante

reserve price before the auction also serves accounting purposes as it allows the ONF to

compute an ex-ante estimate of the aggregate proceeds they should expect from the sale.

C Characterization of equilibrium bidding strategies

In our model, the equilibrium bidding strategy does not have a closed-form solution, because

the ex-post reserve price depends on the bids, and thus, implicitly, on the endogenous bidding

strategy. Therefore, a constructive characterization of an equilibrium bidding strategy is out

of reach. This section proposes two alternative characterizations of the equilibrium bidding

strategy.

Note that in an auction indexed by Y = 1, the equilibrium bidding strategy solves the

following optimization problem

β1(x) ∈ argmax
b

(x− b)W̃1(b),

where W̃1(b) is the equilibrium probability of winning against all other opponents and the

ex-post reserve price. By the Envelope Theorem, the slope of the optimized interim bidder’s

profits at type x is equal to the equilibrium probability of winning W̃1(b) at the optimum

bid b = β1(x). Recalling that β1(x) = x, we can write the envelope condition as

β1(x) = x−
∫ x

x
W̃1(β1(z))dz

W̃1(β1(x))
. (11)

Without the ex-post reserve price, W̃1(β1(x)) would be equal to the distribution of max{X−i},
that is, F n−1

X (x). In our application, W̃1(β1(x)) depends on the strategies of other players.

Precisely, it is equal to the distribution of max{β−1
1 (R−i1(X0, S,A−i)),X−i}, which cannot

be further simplified. Therefore, β1(x) corresponds to a fixed point in the space of strategies,

satisfying (11).

An alternative characterisation can be obtained via first order conditions. We decom-

pose W̃1(b) into the product of W1(b) - the equilibrium probability of winning against all
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other opponents and the ex post reserve price, conditional on being the highest bidder, and

F n−1
X (β−1

1 (b)) - the probability of being the highest bidder. Since W1(b) is non-decreasing by

Lemma 1, the profit has increasing differences in (x, b), that is, the single-crossing property is

satisfied. Therefore, the solution to the first-order conditions also satisfies the second-order

conditions. The strategy β1(x) solves the following ordinary differential equation (ODE)

β′
1(x) =

(x− β1(x))(n− 1)fX(x)/FX(x)

1− (x− β1(x))w1(β1(x))/W1(β1(x))
, β1(x) = x, (12)

where w1(b) is the derivative of W1(b). When the secret reserve price is independent of bids,

W1(b) is a known distribution, and thus an equilibrium can be found by numerically solving

the ODE.

Finally, denoting ξ1(x) the inverse bidding strategy, ξ1(x) solves the following ODE

ξ′1(b) =
FX(ξ1(b))

(n− 1)fX(ξ1(b))
[

1

(ξ1(b)− b)︸ ︷︷ ︸
standard auction

− w1(b)

W1(b)︸ ︷︷ ︸
secret r.p.

], ξ1(x) = x. (13)

The latter expression shows that the effect of the secret reserve price on the bidding strategy

is ambiguous. The direction in which the strategy shifts depends on the sign of w1(b), which

can be positive or negative, because W1(b) is not necessarily a c.d.f (as it is the ratio of

W̃1(b) over F
n−1
X (β−1

1 (b))). If the secret reserve price is independent of bids, W1(b) is a c.d.f,

and thus the effect of a secret reserve price on the equilibrium bidding strategy would be to

induce more aggressive bidding than with no reserve price.

D Counterfactual Analysis

D.1 Counterfactual public reserve price

We derive in this section the expression for the counterfactual public reserve price that yields

the same allocation rule as a fixed secret reserve price of R0 = X0Ỹ .

Let βs
y(.) denote a symmetric Bayesian Nash equilibrium of a first-price auction (indexed

by Y = y) with a fixed secret reserve price equal to R0 = X0Ỹ . Under this reserve price

policy rule, we assume that the seller commits not to revise her reserve price after observing

the bids. The reserve price is separable in Y (recall that Ỹ = S × Y ). An argument similar

to Proposition 1 shows that βs
y(.) is also separable in Y . We have

βs
y(x) = yβs

1(x) , ∀x ∈ [x, x]
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Let ξsy denote the inverse bid function corresponding to βs
y(.). Define the public reserve price

RP
0 = Y × ξs1

(
R0

Y

)
Lemma 3. A public reserve price equal to RP

0 generates the same allocation rule as a secret

reserve price equal to R0.

Proof . The allocation rule under a secret reserve price equal to R0 is given by

qs(x, y) =

{
1 ifmax

i
βs
y(xi) ≥ R0

0 otherwise

where x is the vector of bidders’ private values. The allocation rule under a public reserve

price equal to RP
0 is given by

qP (x, y) =

{
1 ifmax

i
yxi ≥ RP

0

0 otherwise

From the definition of RP
0 , the two allocation rules are identical, and generate, by the revenue

equivalence theorem, the same expected auction outcomes.

We note two important considerations. In practice, the public reserve price RP
0 cannot

be implemented because it is a function of the unobserved auction heterogeneity component

Y . This component is not observed by the seller. In our counterfactual exercise, we simulate

each auction by drawing from the model primitives (e.g., Y ) and can therefore construct the

public reserve price; or equivalently, we can use the fixed secret reserve price R0, generating

the same allocation.

Second, the equilibrium bid function βs
y in the first-price auction with secret reserve R0

does not have a closed-form solution. To implement the public reserve price RP
0 , we solve

for βs
1(x) numerically. In the game indexed by Y = 1, the interim payoffs of bidder i with

value xi is

π(xi; x̃i) = (xi − βs
1(x̃i))P (βs

1(x̃i) ≥ X0S ∩ βs
1(x̃i) ≥ βs

1(Xj), j ̸= i)

= (xi − βs
1(x̃i))H(βs

1(x̃i))FX (x̃i)
n−1

(14)

whereH denotes the cumulative distribution ofX0S. The first-order condition characterizing

bidder i’s truth-full bidding (x̃i = xi, by the revelation principle) is

dβs
1(xi)

dx
= (xi − βs

1(xi))
(n− 1) fX(xi)

FX(xi)
H(βs

1(xi))

H(βs
1(xi))− h(βs

1(xi))(xi − βs
1(xi))
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or equivalently d

dx
+ (n− 1)

fX(xi)

FX(xi)

1

1− h(βs
1(xi))

H(βs
1(xi))

(xi − βs
1(xi))

 βs
1(xi) = xi(n−1)

fX(xi)

FX(xi)

1

1− h(βs
1(xi))

H(βs
1(xi))

(xi − βs
1(xi))

with boundary conditions βs
1(x) = x and βs

1(x) = b for some unknown b. We discretize

the value space and solve the differential equation by fixed-point iteration (Fibich and Gavish

(2011)). The algorithm performs well and converges to a unique fixed point from a large

number of initial choices for the function βs
1(xi). The corresponding inverse bid function ξs1

can be used to construct RP
0 .

D.2 Algorithm for solving the auction with learning rule (c)

In this section, we introduce the algorithm used to solve for the equilibrium of the first-price

auction game in which the seller uses the learning rule given by Equation (7). Computation

of an equilibrium is complicated by the fact that the distribution of the ex-post reserve price

R1 (from the perspective of bidder i) depends on the bidding strategy of rival firms.

Bidder i’s interim payoff (Equation (8)) can be written

π(xi, y; bi) = (xiy − b)P (bi ≥ R1(X0, Ỹ , bi,B−i; γ) ∩ bi ≥ Bj, j ̸= i | Y = y)

= (xiy − b)P (bi ≥ R1(X0, Ỹ , bi,B−i; γ) | Y = y, bi ≥ Bj)P (bi ≥ Bj, j ̸= i|Y = y)

To win the auction, bidder i must outbid his rivals as well as the ex-post reserve price chosen

by the seller. This reserve price is a function of the seller’s ex-ante appraisal value and the

vector of bids submitted. Denote by W (bi|Y = y) = P (bi ≥ R1(X0, Ỹ , bi,B−i; γ) | Y =

y, bi ≥ Bj) the probability that bidder i wins the item (i.e., submits a bid higher than the

ex-post reserve price) given that he submitted the highest bid among all bidders. Note that

this probability depends on the distribution or rivals’ bids through B−i. Let βc
y denoted

an equilibrium of this game. Since the learning rule satisfies Assumption 1, Proposition 1

applies. We have that βc
y = y × βc

1.

The first-order condition characterizing bidder i’s equilibrium bid function, in the game

indexed by Y = 1, is

dβc
1(xi)

dx
= (xi − βc

1(xi))
(n− 1) fX(xi)

FX(xi)
W (βc

1(xi)|Y = 1)

W (βc
1(xi)|Y = 1)− w(βc

1(xi)|Y = 1)(xi − βc
1(xi))

(15)

with boundary conditions βc
1(x) = x. The solution, for a given value of the parameter γ,
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is found numerically by best-response iteration using Algorithm 1 (in particular, in each

iteration, the non-linear problem Equation (15) is solved by an inner fixed-point iteration

method). Following this approach, the learning rule is updated at each iteration.

Algorithm 1 Equilibrium solver

1: Initialize the bid function βc
1(.) (e.g., β

c
1(x) = x)

2: ∆ := ϵ+ 1
3: while ∆ > ϵ do
4: Define the learning rule as in Equation (7), given βc

1(.).
5: Compute the probability of winning with a bid b if rivals follow strategy βc

1(.)

P (b ≥ R1(X0, S, b,B−i; γ) ∩ b ≥ Bj, j ̸= i|Y = 1)

6: Find the best-response against strategy βc
1(.) (solving ODE Equation (15) via fixed-

point iteration)

β∗
1(xi) = argmax

b
(xi − b)P (b ≥ R1(X0, S, b,B−i; γ) ∩ b ≥ Bj, j ̸= i|Y = 1)

where B−i are rival bids generated using strategy βc
1(.)

7: Update the best-response: βc
1 := β∗

1

8: ∆ := ||β∗
1 − βc

1||2
9: end while
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