
Estimating the Costs of Standardization:

Evidence from the Movie Industry

El Hadi Caoui∗

March 11, 2022

Abstract

This paper studies the decentralized adoption of a technology standard when network
effects are present. If the new standard is incompatible with the current installed
base, adoption may be inefficiently delayed. I quantify the magnitude of “excess
inertia” in the switch of the movie distribution and exhibition industries from 35mm
film to digital. I specify and estimate a dynamic game of digital hardware adoption
by theaters and digital movies supply by distributors. Counterfactual simulations
establish that excess inertia reduces surplus by 16% relative to the first-best adop-
tion path; network externalities explain 41% of the surplus loss. Targeted adoption
subsidies or a mandate on digital distribution help bridge this welfare gap.

Keywords: dynamic games, network effects, technology adoption, movie industry
JEL Classification: C73, L15, O33, L82

∗University of Toronto. Email: elhadi.caoui@rotman.utoronto.ca. I am grateful for the advice
and support of John Asker, Simon Board, Martin Hackmann, and Brett Hollenbeck. I thank Mike
Abito, Heski Bar-Isaac, Allan Collard-Wexler, Ruben Gaetani, Ricard Gil, Renato Giroldo, Hugo
Hopenhayn, Keyoung Lee, Matthew Mitchell, Volker Nocke, Rustin Partow, Ksenia Shakhgildyan,
and seminar participants at Pennsylvania State, Utah, Duke Fuqua, Michigan, Wharton BEPP,
Science Po, Paris School of Economics, IESE Barcelona, Toronto, and CESifo for their helpful
comments and suggestions. I thank Michael Karagosian, Jean Mizrahi, David Hancock, Olivier
Hillaire, and Frederick Lanoy for answering my questions about the digitalization of the U.S. and
French movie industries. All errors remain my own.



1 Introduction

Technology standards play a central role in networked industries.1 When the value of a

technology increases with the number of users, firms have an incentive to coordinate on

a single technology—the standard—to exploit the benefits of a larger network and ensure

interoperability of complementary products. However, once coordinated on a standard,

the industry may become reluctant to switch to new and superior technologies if they are

incompatible with the installed base. Can standardization prevent the efficient adoption of

new technologies? While the theoretical literature (Farrell and Saloner (1985, 1986)) has

shown that inefficient delay (i.e., excess inertia) can arise, attempts to empirically assess it

remain scarce. This paper studies the diffusion of a new technology standard in the movie

industry and estimates the magnitude of excess inertia.

Two sources of inefficiency can delay the adoption of the new technology. First, network

effects may give rise to adoption externalities: the marginal adopter benefits other adopters

(and may hurt non-adopters) so that the private costs and benefits do not reflect the social

ones. Second, incomplete information about other firms’ willingness to adopt induces coor-

dination failure: firms are unwilling to risk switching without being followed, which creates

delays in adoption.

As an application, I study the conversion of movie distribution and exhibition from

the 35mm film standard to digital cinema between 2005 and 2013 in France, the largest

European market by number of screens and theaters. Digital cinema consists of distributing

motion pictures to theaters over digital supports (internet or hard drives) as opposed to the

historical use of 35mm film reels. To screen digital movies, theaters must equip their screens

with digital video projectors instead of film projectors.

This technological switch is well suited for assessing excess inertia in standard adop-

tion. Indeed, the movie distribution-exhibition industries constitute a hardware-software

system with (indirect) network effects (Katz and Shapiro (1985)).2 Because film and digi-

tal are incompatible technologies, adoption of digital projectors—the hardware—by theaters

is contingent on the availability and variety of digital movies—the software—supplied by

distributors. Conversely, software variety depends on the hardware installed base.

Market forces may not have provided sufficient incentives for an efficient switch from

1Examples include AC in electric power distribution, FedACH for wire transfers in banking, USB for data
transmission, MP3 and 3.5mm jack for music distribution, NTSC for color TV transmission, and 4G LTE
in broadband networks for mobile devices. The European Commission has identified five priority domains
(5G, cloud, cybersecurity, big data and the internet of things) where ICT standardisation is most urgent.
Applications that would benefit from standardization in these domains include e-health, intelligent transport
systems, and smart energy (European Commission (2016)).

2See also Chou and Shy (1990), Church and Gandal (1992), Church, Gandal, and Krauske (2008).
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35mm film to digital. On the exhibition side, the adoption of digital projectors by a theater

raises distributors’ incentive to release movies in digital. This increased availability of digital

movies is a positive externality on other theaters, which is not internalized by the adopter.

On the distribution side, uncertainty about other distributors’ willingness to release movies

in digital can lead to coordination failure, with some distributors inefficiently delaying their

digital conversion.3 Indeed, it is optimal for a distributor to release a given movie in digital

only if sufficiently many theaters are equipped to screen it. The fraction of equipped theaters

will be high if sufficiently many distributors are releasing digital movies. This chicken-and-

egg problem can make a unilateral switch to digital suboptimal.4

The paper leverages novel datasets on adoption of digital projectors at the theater-screen

level, theater characteristics, digital conversion costs, digital movie availability, and average

distribution costs (printing, shipping and storage cost per movie print) under the film and

digital technologies.

To test whether the diffusion of digital was inefficiently delayed, I specify a dynamic

structural model of the movie exhibition and distribution sectors. Theaters’ technology-

adoption choices are modeled as a dynamic game played at the level of the French movie

industry, allowing for rich theater and market heterogeneity (e.g., type of programming, chain

affiliation, market size, number of rival’s screens, etc.). Every period, theaters choose the

number of screens to equip with digital projectors, given the adoption cost and availability

of digital movies. In turn, the availability of digital movies depends on the installed base of

digital screens in the industry.

Because network effects are at the industry level, with hundreds of theaters adopting, this

framework generates a particularly high-dimensional state space. To alleviate the computa-

tional burden, I define a nonstationary oblivious equilibrium (Weintraub, Benkard, Jeziorski,

and Van Roy (2008)) of the game exploiting the fact that a single theater is non-atomic and

plays against the expected distribution of the industry state. The model is estimated using a

conditional choice probability-based method (Hotz and Miller (1993), Hotz, Miller, Sanders,

and Smith (1994)) combined with matrix inversion to obtain choice-specific value functions

(Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-Dengler (2008)). The estimation

approach exploits differences in adoption behavior across theaters (e.g., differences in adop-

tion times, units of new technology acquired, and adoption costs) to estimate how exogenous

theaters and market characteristics affect the single-period profits from converting a screen

3Distributors’ willingness to switch depends on costs that vary widely across heterogeneous distributors
(large U.S. studios vs. small French distributor) and are private information.

4In general, these two sources of inefficiency may arise both for upstream distributors and downstream
theaters. The focus on externalities among downstream theaters is motivated by the data and the institu-
tional framework.
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to digital.

Using the estimated model, the paper quantifies the delay in adoption and explores vari-

ous policy remedies via counterfactual analysis. First, in the planner’s benchmark, I solve for

the adoption path chosen by a planner maximizing aggregate theater profits, taking as given

upstream distributors’ equilibrium reaction function (fraction of movies released in digital

given the installed base of digital screens). In this counterfactual, adoption externalities

across theaters are internalized, leading to a steeper adoption path. Differences in theaters’

surplus between the market outcome and the planner’s benchmark are attributed to adop-

tion externalities across theaters. Second, in the coordination benchmark, I assume that the

planner mandates coordination on digital distribution upstream starting in 2005 and max-

imizes aggregate theater profits. Differences in theater’ surplus between the coordination

and the planner’s benchmarks are attributed to coordination failure upstream.

The adoption path under the equilibrium market outcome is delayed compared to the

coordination and planner’s benchmarks: by 0.8 to 3 years for the time to 10% adoption, and

0.3 to 0.5 years for the time to 90% adoption. Additionally, inefficient delays in adoption

reduce surplus by 16% relative to the first-best path (coordination benchmark). Adoption

externalities across theaters explain 41% of the surplus loss.

Broad-based adoption subsidies and subsidies targeting small theaters are effective at

internalizing these adoption externalities. Under a 25% adoption subsidy, both policies

achieve industry profits on par with the planner’s benchmark. Nonetheless, the results

indicate that coordinating distributors to make their movies available in digital would be

more effective than subsidizing theater adoption. In general, whether a planner should

target the software or the hardware side in a two-sided market is an empirical question

that is industry-specific: e.g., it depends on the magnitude of indirect network externalities

from hardware to software (and from software to hardware) and the magnitude of the cost

reductions on each side.

The methodology and empirical findings are relevant for understanding the determinants

of technology adoption and, ultimately, productivity growth in other hardware-software in-

dustries with many firms. Recent examples include: the switch from USB-A/B to USB-C in

the consumer electronics industry, where computer and smartphone (hardware) manufactur-

ers’ adoption depends on the availability of USB-C compatible software (i.e., peripherals and

accessories such as monitors, webcams, audio system, controllers, TVs, keyboards, mouses,

and printers); or the switch from chip card to contactless technology in the debit/credit

card market, where issuance of contactless cards by financial institutions (hardware side) is

predicated on merchants (software side) acceptance and adoption of contactless point-of-sale

terminals.
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The rest of the paper is organized as follows. The next section reviews the literature and

highlights the main points of departure from it. Section 3 presents the movie distribution

and movie exhibition industries, describes the technology and highlights the specificities of

the French market. Section 4 describes the data and gives preliminary descriptive statistics.

Section 5 develops the dynamic structural model of technology adoption. Section 6 shows the

identification and estimation of the industry model. Section 7 presents the counterfactual

analysis. Section 8 concludes.

Tables and figures are located after the main text.

2 Related Literature

This paper is related to the literature studying the emergence of technology standards, and

in particular, the benefits of standard-setting organizations (SSOs) relative to decentralized

markets. Recent work includes Rysman and Simcoe (2008), Farrell and Simcoe (2012), and

Simcoe (2012). This paper differs from this literature by shifting the focus from delays

occurring during an SSO’s deliberation process to the subsequent delays in the decentralized

diffusion of the standard elected by the SSO. Given that reaching consensus on the technical

specifications of a standard does not guarantee immediate adoption, this paper complements

the literature by emphasizing delays in post-consensus adoption.5

Previous empirical work on technology adoption under network effects has primarily

focused on the identification and estimation of network effects. Identification is, in general,

not straightforward due to the reflection problem (Manski (1993)). Rysman (2019) discusses

this issue in the case of network effects and reviews the approaches taken to address it. In

the context of direct network effects, recent contributions use regional or individual-specific

exogenous shifters of network size to identify network effects: Gowrisankaran and Stavins

(2004) study ACH adoption by banks, Tucker (2008) studies video-messaging adoption by a

bank’s employees, Goolsbee and Klenow (1999) study adoption of home computers.

For technologies with indirect network effects, the literature relies on instruments that

shift adoption on one side of the market (e.g., software market) to identify the degree of indi-

rect network effects on the other side of the market (e.g., hardware market). Recent examples

include: video games platforms (Clements and Ohashi (2005), Corts and Lederman (2009),

Dubé, Hitsch, and Chintagunta (2010)), compact disks titles-players (Gandal, Kende, and

Rob (2000)), DVD titles-players (Karaca-Mandic (2003), Gowrisankaran, Park, and Rysman

(2014)). In addition to the endogeneity problem, the latter paper highlights other econo-

5In the case of digital cinema, deliberation by the Society of Motion Picture and Television Engineers
took place between 2000 and 2004. I focus on the diffusion of the standard elected, between 2005 and 2014.
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metric issues arising with time series data: hierarchical variation and spurious correlation.

Because the data structure in this paper is likely to give rise to the same econometric issues,

I build on their approach in the estimation section.

A few papers within this literature go beyond the estimation of network effects and discuss

welfare implications. Ohashi (2003) studies the war between VHS and Betamax in the VCR

market and quantifies the value of compatibility between the two technologies. Rysman

(2004) studies the Yellow Pages market and analyzes the trade-off between market power

and internalization of network effects. Augereau, Greenstein, and Rysman (2006) discuss the

potential role of ISPs differentiation in the initial failure to coordinate on a standard for 56K

modems. Ackerberg and Gowrisankaran (2006) examine the welfare implications of customer

and bank subsidies in ACH adoption. Ryan and Tucker (2012) study video-calling adoption

within a multi-national firm and simulate counterfactual diffusion paths under alternative

network seeding policies. Lee (2013) studies the welfare impact of exclusivity contracts

between software providers and hardware platforms in the video game industry. The present

paper contributes to this literature by investigating whether equilibrium standard adoption

in network industries would differ from the social optimum, and if so, by identifying the role

of adoption externalities in the surplus loss.

This paper makes a contribution to the literature using dynamic games to study in-

novation and technology adoption. Recent research analyzes the effect of competition on

innovation (e.g., Goettler and Gordon (2011), Igami (2017), Igami and Uetake (2017)) or

technology adoption (Schmidt-Dengler (2006), Macher, Miller, and Osborne (2021)). This

paper contributes to this literature in two ways. First, I apply the dynamic oligopoly frame-

work to tackle a novel question: i.e., the efficiency of the technology diffusion path in a net-

work industry. Recent advances in the estimation of dynamic games allow high-dimensional

strategic interdependence (adoption externalities) between firms at the industry level. Sec-

ond, this paper highlights the importance of measuring and modeling adoption within the

firm (e.g., at the unit of capital level). Indeed, multi-homing (i.e, the simultaneous use of two

technologies across a firm’s capital stock) is a common feature of a wide array of industries

(Mansfield (1963), Battisti and Stoneman (2005)).

This paper contributes to the empirical literature studying the movie industry. This liter-

ature has considered many facets of the industry: the effect of vertical integration (Gil (2009),

Andrew Hanssen (2010)), seasonality (Einav (2007)), release dates (Einav (2010)), strate-

gic entry and exit, and spatial retail competition (Davis (2006a), Davis (2006b), Takahashi

(2015), Gil, Houde, and Takahashi (2015)). Recent contributions have studied digitization

in the movie industry. Waldfogel (2016) studies the effect of digital movie production, alter-

native distribution channels, and online film criticism on new releases. Rao and Hartmann
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(2015) study the quality-variety trade-off in screening brought about by digital projection.

Yang, Anderson, and Gordon (2020) evaluate the impact of digital projection on product

variety and supply concentration. Whereas the last two papers analyze how theater-level

screening choices change post-digital adoption, I focus on theaters’ dynamic decision to

adopt, which is primarily driven by labor costs savings and digital software availability.

3 Industry Background

This section describes the movie-distribution and movie-exhibition industries before and

after the advent of digital technology. It presents the costs and benefits of digital cinema

from the perspective of distributors and exhibitors and discusses the effect of digital cinema

on movie ticket prices and quality. Finally, this section highlights the specificities of the

French distribution and exhibition markets and important stylized facts.

3.1 From 35mm film to digital

For most of the 20th century, movies reached viewers after going through a series of steps

in a vertically structured industry. After the movie is shot and edited, distributors print

the movie onto 35mm film reels and ship the reels to movie theaters. At the theater, a

projectionist arranges the reels so they can be fed to a film projector. When the movie’s run

is over, the print is broken back down into shipping reels and either sent to the next theater

or returned to the distributor.

On January 19, 2000, the Society of Motion Picture and Television Engineers, in the U.S.,

initiated the first standards group dedicated to developing digital cinema. The technology

would entail (1) movie distribution on a digital support (via the internet or hard drives),

instead of the historical uses of film reels and (2) movie projection via digital projection

hardware instead of the film-projection technology.

To screen a digital movie, theaters must equip their screens with digital projectors. Four

manufacturers supply digital cinema projectors worldwide: Sony, Barco, Christie, and NEC.

The average list price of a digital projector (in 2010 euros) was e88, 000 in 2005, e50, 000 in

2010, and e40, 000 by 2012. In addition to the digital projector, a digital cinema requires a

dedicated computer, the “server.” A digital movie is supplied to the theater as a digital file

called a Digital Cinema Package (DCP). The DCP is copied onto the internal hard drives of

the server, usually via a USB port.
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3.1.1 Supply of digital movies by distributors

Digital distribution of movies drastically cuts printing and shipping costs for movie distrib-

utors. The cost of an 80-minute feature film print is on average between US$1,500 and

$2,500. By contrast, a feature-length movie can be stored on an off-the-shelf 300 GB hard

drive for $50.6 In addition, hard drives can be returned to distributors for reuse. With

several hundred movies distributed every year, the distribution industry saves over $1 billion

annually.

Importantly, the distribution format (digital or film print) is independent of the support

on which the movies is shot (i.e., with a film or digital camera). Indeed, editing and post-

production have been done digitally since the mid-1990s and digital cameras have been the

main medium for shooting since the early 2000s.

3.1.2 Adoption of digital projectors by exhibitors

Digital projection allows exhibitors to cut down on operating costs. Screening film prints

is a technical task, requiring mechanical skills that are increasingly rare and costly.7 By

contrast, digital projection automates all the tasks that were previously performed by the

projectionist. Untrained staff can easily compose a playlist and launch a projection as on

a regular computer. Digital projection also opens up the possibility of using theaters for

“alternative content” such as pop concerts, opera broadcasts, and sports events.

3.1.3 Multi-homing by movie distributors and theaters

Multi-homing in distribution consists in distributing a given movie on both film and dig-

ital supports. According to industry professionals, multi-homing was widespread over the

diffusion period studied in this paper (2005–2014).

Multi-homing in exhibition refers to equipping a given screen with both a digital and

film projector. This type of multi-homing was rare for practical reasons (limited space in

screening booth, heavy and sensitive projection equipment), and because theaters laid off

their projectionists following the adoption of digital projection.

3.1.4 The Virtual Print Fee system

A large fraction of the cost savings from digital cinema is realized by distributors. For

this reason, theaters have been reluctant to switch without a cost-sharing arrangement with

distributors. An agreement was reached with the Virtual Print Fee (VPF) system. Under

this system, the distributor pays a fee per digital movie to help finance the digital hardware

acquired by the theater. The VPF contract would typically cover 50% of the hardware

6Encryption-key generation, transportation, and storage, add approximately $200–$300. For French/Eu-
ropean movies, these figures are around 950e for film print distribution and around 350e.

7Film projectionists are commonly represented by powerful unions. See the interview in l’Obs 07/14/2010
(in French) “Frédéric, projectionniste chez UGC pour 1800 euros par mois” The collective bargaining agree-
ments set the minimum monthly salary to e1, 500 over the period of interest.
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adoption cost; the rest has to be paid for by the exhibitor.

3.1.5 Impact on ticket prices and movie quality; and the role of 3D

Excluding 3D movies, the film-digital quality differential was small enough not to warrant

any impact on ticket prices. Although 3D movies, and in particular Avatar (released in

the winter 2009, grossing $2.7 billion worldwide), were initially a major selling point for

digital projection, exhibitors quickly realized it was not expanding the audience as promised

(Bordwell (2013)). The vast majority of movies released over the diffusion period were in

2D.

3.2 The French distribution and exhibition market

3.2.1 The French exhibition industry

The French exhibition industry is fragmented: half of theaters are mono-screen, and an ad-

ditional 15% are two-screen theaters. The largest theater chains by share of total screens in

2014 are Gaumont-Pathé (13.6% of screens), CGR (7.8%), and UGC (7.5%). These three

chains make up 50.1% of total box office revenue (Kopp (2016)). The French exhibition

industry experienced small entry and exit rates over the diffusion period (around 1.5% per

year). As a result, the majority of digital projectors acquired were replacing old film pro-

jectors, enabling the analysis of the industry’s choice between the old and new technology

standard.

3.2.2 The French distribution industry

Between 2005 and 2014, U.S. movies had an average 47% market share (of total box-office

revenue in France), French movies had a 39% market share, and European and other na-

tionalities made up 14% of the box office.8 Importantly, U.S. studios distribute their movies

in France via national subsidiaries (e.g., Universal France or Warner Bros. France). Sub-

sidiaries tailor their advertising and distribution campaigns to the national market they

operate in. Therefore, the support—film or digital—over which U.S. movies are distributed

in France depends in part on the installed bases of film and digital projectors in France.

3.2.3 The VPF and government subsidies

The VPF system was initially the result of bilateral negotiations between distributors and

exhibitors. In September 2010, a law was passed making VPF contributions mandatory:

any distributor willing to distribute digital copies of its movie must pay a fixed fee to the

theater booking the digital copy. The VPF contributions would go toward covering 50% of

the digital projector cost, the rest being paid by the exhibitor.

Government and regional subsidies to small theaters were another important feature of

8Calculations based on the CNC 2014 annual report.
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the hardware-acquisition process. Many small “continuation” theaters, which receive movies

only two or three weeks after their national release, did not generate enough VPF to be

able to acquire the digital-projection hardware. The government, along with the regions,

stepped in to help these theaters finance their digital conversion. These aids were allocated

to theaters that owned fewer than three screens and were not part of a chain controlling 50

screens or more.

3.2.4 Art house theaters

French theaters can acquire the “art house” label if they screen a minimum share of in-

dependent and art house movies. The label, awarded every year, entitles the theater to

government financial support (in the form of a lump-sum subsidy). A priori, art house the-

aters may differ in their adoption behavior from commercial (i.e., non-art house) theaters if

there are significant differences in operating profits.

4 Data and Descriptive Statistics

This section describes the data and presents descriptive statistics. The data contain infor-

mation on theaters’ digital-adoption decisions, theater characteristics, adoption costs, and

availability of digital movies over time.

The main dataset is a panel describing digital adoptions by theaters. This dataset was

collected from two sources: the European Cinema Yearbooks published by Media Salles,

and an online database maintained by Cinego, a private digital platform.9 Both sources are

public and provide snapshots of the digital-exhibition industry at different periods spanning

June 2005 through March 2013, in France. At each of the 18 observation dates, the number

of digital projectors acquired is known for every active theater. Figure 1a represents the 18

observation dates along with the industry share of screens equipped with digital projection.

The panel is aperiodic (starting in 2008) and stops before the diffusion is complete in 2014.

Five periods are dropped to ensure a relative periodicity in the sample (6 months). Details

about this procedure can be found in Appendix A.

Three auxiliary datasets complement the main adoption panel dataset. The first is ob-

tained from the French National Center of Cinematography (CNC hereafter). This dataset,

covering the period 2005-2015, contains (1) lists of all active theaters, (2) the number of

screens, the number of seats, the address, the owner’s identity (chain, individual), and art

house status for each active theater, (3) market population (categorical) at the urban/rural

unit level (defined below), and (4) the annual share of movies released in digital (distributed

9Raw data available at: http://www.mediasalles.it/yearbook.htm and
https://cinego.net/basedessalles (via the Internet Archive)
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partially or entirely in digital) in France.

The second auxiliary dataset, obtained from the European Audiovisual Observatory,

provides time-series information on digital-projector acquisition costs.10 Namely, the time-

series for the hardware adoption cost is constructed by adding (1) the price of a digital

projector (net of VPF contributions) to (2) ancillary costs. The time-series for digital-

projector prices is based on a survey of projector manufacturers. Actual prices paid by

specific theaters are not public due to nondisclosure agreements. This time-series is taken

as representative of the “list” price of digital projectors. The analysis accounts for the

VPF subsidies, which cover 50% of the projector price. Ancillary costs include the price of

other equipment (the server and the digital sound processor), Theater Management software,

and labor costs (installation). Estimates of ancillary costs were collected by the European

Audiovisual Observatory, but are only available for 2010. In the analysis, these ancillary

costs are assumed to have stayed constant over the sample period. This assumption seems

reasonable for labor costs. According to the Observatory, price declines for the server and

digital sound processor are more limited than for the digital projector. The hardware-

adoption cost is adjusted to 2010 constant euros. The hardware adoption cost is interpolated

to obtain estimates at the 13 observation dates. Figure 1b shows the time series for this

variable.

Third, data on the number of movies released in digital in the U.S. between 2005 and

2015 is obtained from the Internet Movie Database (IMDb). For each movie release, the

website reports technical specifications including the “printed film format” over which the

movie was distributed (e.g., 35mm, digital). This information is collected for all U.S. movie

releases over the period of interest.

The analysis is conducted on the data after the following preparation. Itinerant theaters,

which account for 5% of active theaters, are dropped. Because the focus is on firms’ decision

to convert existing capital from film to digital, theaters that enter during the diffusion period

already equipped with digital projectors are excluded from the model. Their contribution to

the overall installed base of digital screens is, however, accounted for and taken as exogenous.

Firms exiting before conversion to digital are also excluded.11 Rates of entry and exit are,

however, low (between 1 and 1.5% of firms enter or exit every year). Theaters in French

overseas territories are excluded. The final sample includes 1, 671 theaters, located in 1, 169

markets (urban or rural units, defined below), and observed over 13 dates between June 2005

and April 2012. The sample covers 87% of all non-itinerant theaters located in Metropolitan

10See “The European Digital Cinema Report - Understanding digital cinema roll-out” (Council of Europe,
2012)

11The inability to convert is, however, not a significant cause for exit because the CNC and regional
governments subsidized digital adoption for the smallest and less financially sound theaters.
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Figure 1: Data and descriptive statistics

(a) Observation times for the diffusion of digital
projectors

(b) Hardware adoption cost (2010 e)

France, which were active in 2005 or entered before 2008 equipped with the old technology.

Local market definition and competitors

Local market demand and competition are defined based on the urban or rural unit in which

the theater is located. An urban unit is defined by the INSEE, the French National Statistics

Office, for the measurement of contiguously built-up areas. It is a “commune” alone or a

grouping of communes forming a single unbroken spread of urban development, with no

distance between habitations greater than 200 meters, and a total population greater than

2,000 inhabitants. Communes not belonging to an urban unit are considered rural.12 In

2010, Metropolitan France contained 2, 243 urban units and about 33, 700 rural units.

For the largest cities (Paris, Lyon, Marseille), the urban unit division is not appropriate,

because the resulting local markets are unreasonably large. In these cases, the relevant

market within each city is the “arrondissement” (equivalent to zipcode in the U.S.).13 In

the rest of the paper, a theater’s competition is measured using the number of competing

screens in the same local market.

Descriptive statistics

12Communes correspond to civil townships and incorporated municipalities in the U.S.
13The subdivision by arrondissement is arbitrary, given that theaters are engaged in spatial competition.

As a robustness check, a theater’s competition can also be measured using distance bands around the theater
location. With a distance band of 5 miles, this alternative definition gives similar values for the variable
“number of competitors’ screens.”
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The analysis focuses on theaters with at least four screens, due to the prevalence of gov-

ernment and regional subsidies for theaters with three screens or fewer.14 Tables 1 and 2

report cross-sectional summary statistics, and highlight the market and firm heterogeneity

captured by the data for the 399 theaters with at least four screens.

Table 1 reports summary statistics by market size. Paris and its suburbs are controlled

for separately because attendance rates are significantly higher in the capital compared to

national averages. As expected, the stock of screens grows with the market size. A larger

fraction of theaters is art house in rural areas because the CNC’s threshold requirements

to qualify are lower for relatively less dense areas. Theater size increases on average with

market size (except for Paris, where the scarcity of space limits theater size).

Table 2 describes theater characteristics. A significant fraction of theaters, 33%, are art

house theaters. The average theater has eight screens. Thirty-five percent of theaters are

part of the three largest theaters chains: Gaumont-Pathé, CGR, and UGC. In total, 53.4%

of theaters are miniplexes (4-7 screens), and 46.6% are multiplexes/megaplexes (8 screens or

more).

Table 1: Summary statistics by market size (theaters with at least 4 screens)

Geographic location Theaters Markets Theater size Art house Screens per Screens per
(mean) (share) market (mean) market (st.dev)

Urban unit - >100k inhab 174 101 9.17 0.21 15.79 8.43
Urban unit - 20 to 100k inhab 126 116 7.02 0.56 7.63 2.99
Urban unit - <20k inhab and rural 17 17 6.65 0.65 6.65 3.55
Paris 37 15 7.19 0.14 17.73 9.57
Paris - inner suburbs 18 18 9.22 0.28 9.22 4.98
Paris - outer suburbs 27 26 7.93 0.19 8.23 4.32

National 399 293 8.12 0.34 11.05 7.26

Preliminary analysis of the data uncovers two important points. First, theaters tend

to gradually roll-out digital technology over their stock of screens. Figure 2a shows the

number of new digital screens equipped per year. Figure 2b decomposes this number into:

(1) screens installed by new adopters (theaters with no digital screens in t − 1), and (2)

screens installed by theaters with some digital screens by t − 1. (1) is informative about

the degree of adoption at the extensive margin, whereas (2) is informative about the degree

of adoption at the intensive margin (within-theater). Starting in 2008, a large fraction of

screens converted to digital per year belong to theaters that have already adopted at least

14These subsidies covered part or all of a theater’s adoption costs. They were allocated according to
a government-determined (or regional) timeline. Therefore, subsidized theaters’ adoption behavior does
not stem from an optimization problem and is not informative about underlying benefits from adoption.
Although the model does not formally include subsidized firms, their adoption decisions contribute to the
installed base of digital projectors but remain small due their limited share of box office revenue.
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Table 2: Summary statistics (theaters with at least 4 screens)

Minimum Mean Maximum St. Deviation

Theaters characteristics
Number of screens 4 8.12 23 3.74
Art house label 0 0.34 1 0.47
Number of rival screens 0 8.70 44 11.27

Theaters size
Miniplexes (4-7 screens) 0 0.53 1 0.50
Multi- and Megaplexes (8 screens or more) 0 0.47 1 0.50

Theaters chains (indicator)
UGC 0 0.08 1 0.28
Gaumont-Pathé 0 0.17 1 0.37
CGR 0 0.10 1 0.30

Cost of digital conversion
(per screen, 2010 e) 56, 000 69, 862 84, 000 10, 166

one digital screen in previous periods, highlighting the importance of the intensive margin.

Figure 2: Within-theater adoption

(a) New digital screens (b) Decomposition: Inter/Intra-firm
Note: “Inter-firm” corresponds to screens installed by new adopters (no digital screens
by t − 1). “Intra-firm” corresponds to screens installed by theaters with some digital
screens by t− 1. Subsidized theaters (3 screens or fewer) are excluded.

If digital movie availability is limited, one would expect theaters to convert only a frac-

tion of their screen in a given period. To closely match this feature of the data in the

theoretical section, adoption decisions will be modeled at the screen-level. In Appendix B, I

provide reduced-form evidence that the gradual adoption of digital screens is partly driven

13



by increasing availability of digital movies.

Second, adoption by a theater’s competitors does not significantly affect its likelihood

of adoption. Table 3 shows the result of an ordered probit model in which the fraction of

screens converted by a theater during the past 6 months is regressed on firm and market

characteristics. A polynomial in time is included to capture aggregate time shocks (e.g.,

adoption cost, availability of digital movies, etc.). Once I control for market characteristics

that may create correlation between firms in the same local market, adoption by a theater’s

competitors does not significantly affect its adoption decision. The likelihood-ratio test of

specification (3) against a specification including competitors’ digital screen adoption fails

to reject the null of no effect at the 5% confidence level. To reflect this feature of the data,

the industry model will include strategic interactions only at the industry level (via network

effects) but not at the local market level.15

5 Industry Model

This section presents the dynamic structural model. The model will be subsequently used

to guide the estimation and recovery of theaters’ operating profits under the film and digital

technologies. These profits are required to quantify, via simulation of counterfactuals, the

amount of surplus lost due to excess inertia and the effect of policy remedies (e.g., adoption

subsidies).

Theaters’ technology adoption choices are modeled as a dynamic game played at the level

of the French movie industry. Digital projectors are durables, so the model must incorporate

the fact that theaters can delay their adoption to a future date to benefit from lower prices

and greater availability of complementary goods (i.e., digital movies).

The central part of the model specifies how theaters make their technology adoption

decisions—at the screen-level—as a function of their firm and market-level characteristics,

the adoption cost, and the availability of technology-specific complementary goods (film or

digital movies). Theaters have an incentive to convert to digital projection due to cost-

reductions (primarily labor cost savings). Although the analysis focuses on the exhibition

sector, the model captures via a reduced-form distributors’ per-period decision regarding

on which support to distribute movies (film and/or digital), given the technology-specific

installed bases (screens equipped with film/digital projectors).

Finally, an equilibrium of the distribution-exhibition industries is specified. I start by

15The lack of strategic interactions can be explained by the fact that digital conversion does not create
a differentiation advantage because movies were multi-homed. Moreover, despite lower costs under digital,
anecdotal evidence indicates that theaters did not reduce ticket prices after switching to digital because of
distributors’ resistance (Davis (2006b)).
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Table 3: Adoption policy function

Dependent variable: Share of screens converted ait/Si

(1) (2) (3) (4)
Estimate s.e Estimate s.e Estimate s.e Estimate s.e

Time 0.664 0.065 0.665 0.065 0.691 0.067 -0.243 0.056
Time squared -0.021 0.003 -0.021 0.003 -0.020 0.003 0.032 0.004
Time x Art house -0.211 0.147 -0.217 0.147 -0.291 0.147 0.129 0.009
Time squared x Art house 0.016 0.007 0.016 0.007 0.019 0.007 -0.007 0.001
Own screens 0.091 0.031 0.086 0.032 0.069 0.034 -0.219 0.043
Own screens squared -0.003 0.001 -0.003 0.001 -0.001 0.002 -0.010 0.002
Art house 0.194 0.792 0.202 0.791 0.612 0.787 0.001 0.143
Competitors’ screens (film and digital) -0.003 0.002 -0.005 0.003 -0.001 0.003 0.012 0.006
Own share of d-screens -1.360 0.111 -1.380 0.112 -1.666 0.118 -0.028 0.039

Market dummies
Paris - outer suburbs -0.239 0.170 -0.108 0.172 -0.005 0.126
Urban unit - 20k-100k inhabitants -0.086 0.142 -0.091 0.144 -0.004 0.124
Urban unit - >100k inhabitants -0.078 0.148 -0.097 0.149 -0.010 0.118
Paris - inner suburbs -0.345 0.189 -0.174 0.191 -0.005 0.069
Paris -0.017 0.172 0.186 0.174 -0.004 0.079

Chain dummies
Gaumont-Pathe -0.151 0.080 -0.001 0.135
CGR 0.328 0.094 -0.000 0.066
UGC -0.914 0.133 -0.007 0.046

Interactions: own screens × other variables

Observations 4, 788 4, 788 4, 788 4, 788
- log Likelihood 2, 186 2, 182 2, 144 2, 276
AIC 4, 391 4, 394 4, 323 4, 613

Note: Specification (1) is the baseline specification. Specification (2) augments the baseline by including market dummies to control
for market size. Specification (3) includes both market dummies and theater-chain dummies for the three major French theater chains
(Gaumont-Pathé, CGR, and UGC). Specification (4) also controls for interactions between theater size Si and all other variables. For
market dummies, the omitted category is urban unit with fewer than 20k inhabitants and rural units. For the chain dummies, the omitted
category is single firm and small chains.
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characterizing a Markov Perfect equilibrium of the game. Next, and in anticipation of the

estimation and computation sections, I impose simplifying assumptions to deal with the

high-dimensionality of the state space. These assumptions are shown to be consistent with

the (nonstationary) oblivious equilibrium concept of Weintraub, Benkard, Jeziorski, and Van

Roy (2008).

All vectors are denoted in bold.

5.1 Adoption of digital projectors by theaters

Time is discrete and infinite, t = 1, 2, . . . ,∞. A period corresponds to six months.

Firms: A firm is a movie theater. There are N firms indexed by i ∈ N = {1, ..., N}. This

set is fixed throughout the game: no entry and exit occur.

Firm types: Denote by τ the vector representing a theater’s type, which is fixed through-

out the game. A firm’s type includes the theater size (number of screens), local market

characteristics (market size and the total number of competitors’ screens), art house label,

and a chain identifier.16 Denote by T the set of possible types. For type τ ∈ T , let Nτ and

Sτ denote the total number and size of theaters of type τ (satisfying
∑

τ∈T Nτ = N). The

type of theater i is denoted τ (i).

Firm state space: In period t, the state of theater i ∈ N, publicly observed by all firms,

is the number of screens converted to digital by t, denoted sit ∈ Sτ (i) ≡ {0, 1, ..., Sτ (i)}. The
remaining Sτ (i) − sit screens operate using the film technology.

Let xit = (τ (i), sit). The variables xit and (τ (i), sit) are used interchangeably. The

industry state is the vector of all players’ public state variables in time t and is denoted by

xt = ((τ (1), s1t), . . . , (τ (N), sNt))

Denote by S =
∑

i∈N Sτ (i) the total number of screens in the industry, and st =
∑

i∈N sit

the total number of digital screens in the industry in period t.

Theaters part of the same chain are assumed to make their adoption decisions indepen-

dently. This assumption is imposed to keep the estimation computationally tractable.17

Transition dynamics: A theater can increase its number of digital screens, sit, by paying

an adoption cost. If firm i converts ait screens to digital in period t, the firm transitions to

16Theater size, measured by the number of screens, is stable over time for all theaters.
17Each chain’s state should record firms’ states for all theaters part of the chain, resulting in high-

dimensional chain states. For instance, Gaumont-Pathé (70 theaters) has a chain state with dimension
1,088,430—assuming all theaters have four screens and ignoring theaters’ types. Appendix D.4 discusses the
validity and implication of this assumption in more detail.
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a state si,t+1 given by

si,t+1 = sit + ait for ait ≤ Sτ (i) − sit (1)

There is no uncertainty in state transition. A theater’s state sit is bounded above by its

maximum capacity Sτ (i).

Aggregate adoption cost: The aggregate adoption cost process, {pt}t≥1, includes the digital-

projector price (net of VPF contributions) and ancillary costs. This process is publicly

observable to all firms and assumed to evolve exogenously and deterministically. The process

reflects technological advances in the manufacturing of digital projectors, as well as learning-

by-doing and scale economies, which exogenously decrease the hardware adoption cost over

time.

Firm-specific adoption cost: The per-screen adoption cost for theater i in period t is the sum

of two components:

pt + ϵit (2)

where pt is the aggregate adoption cost and ϵit is a theater-specific shock, drawn from a

distribution with c.d.f F at the start of period t. This theater-specific shock is privately

observed at the beginning of each period and is independent across periods and theaters.

Availability of digital movies: Movies are screened by theaters for one period. According

to industry professionals, multi-homing was widespread over the diffusion period studied in

this paper (2005–2014).18 To match this feature of the distribution market, I impose the

restriction that a given movie is either multi-homed (i.e., distributed on both film and digital)

or released exclusively on film.

For the rest of the analysis, define ht as the share of movies available in digital (hereafter,

simply “the share of digital movies”). This share is a function of the industry state xt as

well as an exogenous shifter, the share of digital movies released in the U.S denoted hUS,t.
19

Let

ht = Γ(xt, hUS,t) (3)

denote distributors’ reaction function giving the share of digital movies as a function

of the industry state vector and the state variable hUS,t. The latter variable is publicly

observable to all firms and assumed to evolve exogenously.

Theaters’ Single-Period Profit Function: The single-period profit of theater i in period

18This is consistent with the findings of Yang, Anderson, and Gordon (2020) for the digitization of the
Korean movie industry. They find that the vast majority of distributors multi-homed until 2015.

19The dependence of ht on the whole vector of firm states xt is without loss of generality. In practice,
however, this vector is high-dimensional and simplifying restriction are imposed in Section 5.2.
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t, if it converts ait units, is given by

Πi(ait,xt, pt, hUS,t, ϵit) = πτ (i)(sit, ht)− ait(pt + ϵit) (4)

where πτ (i)(sit, ht) are theater i’s operating profits (screenings, concessions, advertisements)

in period t, which depends on the firm type and state xit = (τ (i), sit) and the shares of

digital movies ht, and ait(pt + ϵit) is the total cost of converting ait screens in period t.

There is a positive feedback loop between the hardware and software sides of the market,

if πτ (i)(sit, ht) is increasing in ht. For a theater, the benefit from adoption depends on the

share of digital movies ht, which in turn depends on the installed base of digital screens in

the industry (Equation (3)).

Let the difference in single-period profits from choosing action a versus a′ be denoted

∆Πi(a, a
′,xt, pt, hUS,t, ϵit) = Πi(a,xt, pt, hUS,t, ϵit)− Πi(a

′,xt, pt, hUS,t, ϵit)

= −(a− a′)(pt + ϵit)
(5)

The single-period profit function satisfies the following “decreasing difference” restriction

∆Πi(a, a
′,xt, pt, hUS,t, ϵi) < ∆Πi(a, a

′,xt, pt, hUS,t, ϵ
′
i) for any a > a′ and ϵi > ϵ′i. (DD)

From Equation (4), the incremental return ∆Πi equals the incremental cost of converting a

versus a′ screens to digital. This incremental cost is the product of the number of additional

screens a−a′ and the per-screen cost pt+ϵit. Restriction (DD) states that the incremental cost

(in absolute value) is increasing in the per-screen cost or equivalently in ϵit. The restriction

will guarantee that theaters use monotone strategies in ϵit: intuitively, theaters which draw

a lower adoption cost per screen will tend to convert more screens, all else equal.

State space: In a Markov Perfect Equilibrium (MPE), firms use Markov adoption strategies

and condition their adoption decision only on the current vector of state variables yt ≡
(xt, pt, hUS,t) and firm-specific shock ϵit. In particular, firms track xt to form expectations

about the future evolution of the (payoff-relevant) share of digital movies ht.

A pure Markov strategy is a mapping from the current state and shock (yt, ϵit) into

an action ait ∈ Ai.
20 An action profile at denotes the vector of joint actions in period t,

at = (a1t, . . . , aNt) ∈ A = ΠN
i=1Ai. The notation a−i,t = (a1t, . . . , aNt) \ ait ∈ A−i refers to

the actions by theaters other than i.

Value function and optimal adoption rule: Let σi(a|y) denote theater i’s conditional

20The action space Ai is in fact state-specific, because the space of admissible actions is bounded above
by Sτ (i) − sit. I omit this dependence in the notation for clarity of exposition.
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ex-ante (i.e., before the realization of ϵi) belief that action profile a will be played in state

y. The ex-ante value function (where the subscript t is omitted and next-period variables

are marked with a prime) is given by

Vi(y;σi) =
∑
a∈A

σi(a|y)

[
πτ (i)(si, h)− aip+ β

∑
y′

G(y′|y, a)Vi(y
′;σi)

]

−
Sτ(i)−si∑
ai=0

σi(ai|y)aiE[ϵi|ai,y]

(6)

where β is the discount factor, G(y′|y, a) is the probability that state y′ is reached when the

current action profile and state are (a,y), and h is determined by equation (3). The next-

period industry state x′ (in y′ = (x′, p′, h′
US)) is a deterministic function of (x, a) because,

for every firm j,

s′j = sj + aj

Uncertainty about y′ is encapsulated in firm i’s beliefs about other firms’ adoption deci-

sions in σi(a|y).
The optimal adoption rule can be expressed as a function of the choice-specific value

functions. Let Wi(ai|y;σi) denote the discounted expected value function of theater i, net

of current period payoff, when converting ai screens in state y with beliefs σi:

Wi(ai|y;σi) = β
∑

a−i∈A−i

σi(a−i|y)G(y′|y, ai, a−i)Vi(y
′;σi). (7)

Define ∆Wi(a, a
′|y;σi) ≡ Wi(a|y;σi)−Wi(a

′|y;σi) for (a, a
′) ∈ {0, 1, 2, .., Sτ (i) − sit} as the

difference in the choice-specific value functions of converting a and a′ screens to digital in

state y with beliefs σi. Firm i’s optimal adoption rule is derived by noting that, in deciding

the number of screens to convert to digital technology, the firm compares the choice-specific

value functions net of the adoption cost. The adoption cost, in turn, depends on the current

list price pt, and firm i’s idiosyncratic shock ϵit.

Player i’s set of best responses in state (y, ϵi) and under beliefs σi is defined as

BRi(y, ϵi;σi) = {ai ∈ Ai : Wi(ai|y;σi)− ai(p+ ϵi) ≥ Wi(a
′|y;σi)− a′(p+ ϵi) for all a′ ∈ Ai}

(8)

where operating profits πτ (i)(si, h) cancel out because they do not depend on the action

taken in the current period. Srisuma (2013) shows that, if the single-period payoffs satisfy

restriction (DD), BRi(y, ϵi;σi) is a singleton set almost surely. Additionally, for any given

beliefs, each player’s best response is a nonincreasing pure strategy almost surely, that is,
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a(y, ϵi;σi) ≤ a(y, ϵ′i;σi) for all ϵi > ϵ′i

With a discrete action space, the optimal adoption rule, given beliefs σi, takes the form

of a set of cut-offs in ϵi. Additionally, for any beliefs, the lowest and highest actions (a = 0 or

a = Sτ (i) − sit) are always played with positive probability because the shock ϵit takes value

on the real line whereas the choice-specific value functions is uniformly bounded above—due

to bounded profits and expected adoption cost (last term in Equation (6)).

5.2 Market equilibrium

A MPE in pure strategies is first defined. In a MPE, each theater’s adoption decision is

optimal in every state, given its beliefs about future states, and those beliefs are consistent

with the adoption decisions of other theaters. The adoption strategy profile a = (a1, . . . , aN)

and beliefs σ = (σ1, . . . , σN) form a Markov Perfect equilibrium if:

(i) for all i, ai is a best response to a−i given the beliefs σi at all states y (optimality).

(ii) for all i, the beliefs σi are consistent with the strategies a (belief consistency).

Under restriction (DD), Srisuma (2013) provides existence results for a pure strategy

MPE in which equilibrium strategies are monotone in ϵi. Moreover, defining the correspond-

ing conditional choice probabilities (CCP) as

Fi(a|y) = P (a(y, ϵi;σi) ≤ a|y)

the latter paper shows that a necessary and sufficient condition for a MPE is that the

vector of CCP {Fi(a|y)}i,y is a fixed point of the best-response probability mapping (an

extension of the equilibrium characterization results of Pesendorfer and Schmidt-Dengler

(2008) (Proposition 1) and Aguirregabiria and Mira (2007) (Representation Lemma) to the

class of ordered choice games).

Estimation and computation of a MPE present computational difficulties due to the high

dimensionality of the state space xt. In this particular setting, N = 399 and each theater

has at least 5 possible states (Sτ (i) ≥ 4). In anticipation, I reduce the dimensionality of

the state space by imposing behavioral restrictions and defining an alternative equilibrium

concept.

Assumption 1. Theaters use oblivious strategies where they condition their adoption deci-

sions only on their own type and state xit and the time period t. Theaters take the evolution

of the aggregate state variables (xt, ht, pt, hUS,t) as deterministic.
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The equilibrium concept used is the nonstationary oblivious equilibrium (NOE) of Wein-

traub, Benkard, Jeziorski, and Van Roy (2008). This equilibrium concept is used to approx-

imate the short-run dynamics of an industry starting from a given initial industry state.21 If

there is a large number of firms and no aggregate shocks, the industry state starting from an

initial state approximately follows a deterministic path. Each firm can make close-to-optimal

decisions based on its own type and state xit = (τ (i), sit) and by knowing the deterministic

path followed by the industry state (xt or, equivalently, the payoff-relevant state ht).

The NOE concept is particularly well suited to model equilibrium outcomes in the digital

conversion of the movie industry: there is a large number of small firms and screens so that

converting a single screen to digital has a negligible impact on the aggregate state of the

industry and the availability of digital movies ht. Moreover, it is reasonable to assume that

theaters do not track the whole industry state vector xt, but rather, form beliefs about the

evolution of ht. With a large number of firms, the process {ht}t≥1 is close to deterministic.

Next, I define nonstationary oblivious strategies, beliefs, and value functions.

Nonstationary oblivious strategies. In a NOE, each firm’s decisions depend only on the

firm’s own type and state xit = (τ (i), sit) and the time period.22 In this sense, strategies

are type-symmetric. A nonstationary oblivious strategy is a sequence ano = {ano1 , ano2 , . . . },
where for each period t, theater i takes action anot (xit, ϵit). This type of strategy differs from

a (stationary) Markov strategy ai(yt, ϵit) which is a function of the current vector of state

variables yt = (xt, pt, hUS,t) (in particular, the whole industry state xt) but does not depend

on time.

Nonstationary oblivious beliefs. Theaters make their adoption decision assuming that

the industry state evolves deterministically: in particular, the industry state at time t is

the expected industry state after t time periods of evolution given the other firms’ strategy

and starting from the initial industry state. Under this assumption, the industry state is a

function of time. For a common nonstationary oblivious strategy ano played by all theaters,

and given the initial industry state x1, I define the deterministic process of digital movie

availability {ht}t≥1 as

ht = Ext [ht|x1] (9)

where the expectation is taken with respect to the industry state xt generated by strategy

ano and, as before, ht is determined by Equation (3). I make the dependence of the process

21NOE differs from the stationary oblivious equilibrium of Weintraub, Benkard, and Van Roy (2008),
which is suited to approximate the long-run steady state dynamics of an industry.

22A firm’s type τ (i) includes the total number of rivals’ screen (irrespective of their projection technology),
which is exogenous and fixed throughout the game (no entry or exit occurs).
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{ht}t≥1 on the strategy ano explicit by denoting it
{
ht(a

no)
}
t≥1

.23

Nonstationary oblivious value functions. For a pair of nonstationary oblivious strate-

gies (ãno, ano), I define an ex-ante nonstationary oblivious value function for period t (that

is before ϵit is realized), if firm i follows strategy ãno whereas all other firms use strategy ano,

as

Ṽτ (i),t(sit|ãno, ano) = Eϵit

[
πτ (i)(sit, ht(a

no))− ãnot (xit, ϵit)
(
pt + ϵit

)
+ βṼτ (i),t+1(si,t+1|ãno, ano)

]
(10)

where si,t+1 = sit+ ãnot (xit, ϵit). This value function corresponds to the expected net present

value of a type-τ (i) theater that is at state sit at time t and follows nonstationary oblivious

strategy ãno, under the assumption that, for all t ≥ 1, the availability of digital movies is

ht(a
no) at time t. Note that the nonstationary oblivious value function remains a function

of the competitors’ strategy ano through the expected availability of digital movies ht(a
no),

even if the firm’s state trajectory ({sit}t≥1) only depends on the firm’s own strategy ãno.

I abuse notation by using Ṽτ (i),t(sit|ano) ≡ Ṽτ (i),t(sit|ano, ano) to refer to the nonstationary

oblivious value function when firm i follows the same strategy ano as its competitors.

Nonstationary oblivious equilibrium. An nonstationary oblivious equilibrium consists

of a strategy ano that satisfies

sup
ãno

Ṽτ (i),t(sit|ãno, ano) = Ṽτ (i),t(sit|ano) for all i ∈ N, state sit ∈ Sτ (i) and periods t (11)

The belief consistency requirement in a nonstationary oblivious equilibrium is “weaker” than

for a Markov Perfect equilibrium. In the latter, belief consistency requires that each firm

optimizes given beliefs (about state transitions) generated by its competitiors’ equilibrium

strategies. In the former equilibrium concept, belief consistency only requires that each

firm optimizes given the deterministic path of expected aggregate states generated by its

competitors’ equilibrium strategies. Importantly, firm i ignores: (1) its impact on the process

{ht}t≥1 (given competitors’ equilibrium strategies) and (2) the feedback of its own action on

other competitors. The actual stochastic process {ht}t≥1 will in general not coincide with

the deterministic process {ht}t≥1, but converges to it as the number of firms grows to infinity

(keeping the number of firm types fixed).

Weintraub, Benkard, Jeziorski, and Van Roy (2008) provide existence results for NOE

that converge to a stationary strategy as t goes to infinity. That is, they consider nonsta-

23Weintraub, Benkard, Jeziorski, and Van Roy (2008) use an alternative but equivalent representation
of the industry state. The industry state can be expressed as the distribution (or number of firms) in
each possible state. This representation is without loss of generality when focusing on anonymous and
(type-)symmetric equilibrium strategies because the identity i of the firm does not matter (Doraszelski and
Satterthwaite (2010)).
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tionary oblivious strategies ano = {ano1 , ano2 , . . . }, such that

lim
t→∞

anot (xi, ϵi) = ano (xi, ϵi) for all (xi, ϵi)

for some stationary oblivious strategy ano (xi, ϵi). In this particular setting, it is nat-

ural to focus on outcomes generated by strategies that become stationary as t goes to

infinity, that is, where the movie industry converges to a stationary state: indeed, with

unbounded shocks ϵit, all theaters eventually convert and their strategy converges to a sin-

gleton lim
t→∞

anot (τ (i), si, ϵi) = 0. I return to this property in the estimation section as it allows

me to focus on a finite horizon.

To ease navigation, Table 4 shows a complete list of the state variables presented in the

industry model.

Table 4: List of state variables

Description Observed?

Exogenous state variables
τ (i) Firm i’s type (screens Sτ (i), market character-

istics, art house, chain)
Observed

Sτ (i) Firm i’s total number of screens Observed
pt Per-screen adoption cost Observed
ϵit Firm-specific private adoption shock No
ht,US Share of movies released in digital in t in the

U.S.
Observed

πτ (i)(sit, ht) Firm i’s single-period payoff function Estimated

Endogenous state variables
ait Number of screens converted in t Observed
sit Number of screens at the start of period t Observed
xit (τ (i), sit) Observed
xt (x1t, . . . ,xit, . . . ,xIt) Observed
ht Share of movies released in digital in t in

France
Observed

ht(a
no) Nonstationary oblivious belief about ht

(Ext [ht|x1]) given strategy profile ano

No

6 Estimation and Identification

This section presents the identification and estimation of the structural model presented in

section 5. The objective is to recover firms’ operating profits πτ (i)(sit, ht). Estimation results

indicate that there is a significant reduction in costs with the conversion to digital. These
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cost-reductions are consistent with labor cost savings and the magnitude of projectionnists’

wages. Finally, the analysis uncovers the main dimensions of hetereogeneity in profits from

digital across theaters.

6.1 Estimation approach

Given that the behavioral restrictions and the NOE concept are motivated by issues related

to estimation, I start by discussing estimation assuming that the parameter of interest are

identified, and show identification of the model in the following section.

Two issues make the estimation of a MPE in the dynamic game of Section 5.1 complicated.

First is the curse of dimensionality: the large number of firms (due to network effects at the

industry level) and the dimension of firms’ states generate a high-dimensional industry state

space.24 Second, as is common in games of technology adoption under network effects, there

are potentially multiple equilibria.

Although recent approaches for dynamic game estimation (Aguirregabiria and Mira

(2007), Bajari, Benkard, and Levin (2007), Pesendorfer and Schmidt-Dengler (2008), and

Pakes, Ostrovsky, and Berry (2007)) can be used to address the multiplicity issue, the esti-

mation and computation of counterfactuals will still be infeasible due to the dimensionality

of the state space. The model is, therefore, estimated under the assumption that the data

is generated by a nonstationary oblivious equilibrum (that becomes stationary as time pro-

gresses) as introduced in Section 5.2.

Assumption 2. The data is generated by a nonstationary oblivious equilibrium ano in which

strategies are nonincreasing in ϵi and become stationary as time progresses. In the long-

run steady state, all theaters have converted to digital (sit = Sτ (i)), adoption strategies are

stationary (in fact constant, anot = 0), all movies are available in digital (ht = 1), and

single-period profits are constant and given by πτ (i)(Sτ (i), ht = 1).

Assumption 2 allows me to restrict attention to the finite vector of choice-probabilities

corresponding to the NOE played in the data, for t = 1, . . . , T , that is,

{Pt(a
no
it |xit)} for all t = 1, . . . , T and xit = (τ (i), sit)

In the industry model, the shock ϵit has full support on the real line and single-period

profits are bounded, therefore, a firm can always choose ait = 0 with positive probability.

In practice, T is chosen large enough so that, given the realization of the equilibrium ano

24For instance, ignoring firm heterogeneity and assuming all 399 firms are four-screen theaters (so sit ∈
{0, 1, 2, 3, 4}), the total number of possible industry states xt is 1,071,993,300.
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played in the data—in which, by 2015 the industry was entirely converted to digital—the

industry-wide adoption steady state has been reached by T with probability arbitrarily close

to one. In what follows, T is set to 30 periods (i.e., 15 years) and the probability that the

steady state is reached (over 1, 000 simulations of the industry trajectory) is 97%.

The estimation approach follows the CCP-based method proposed in Hotz and Miller

(1993) and Hotz, Miller, Sanders, and Smith (1994) for single-agent dynamic problems,

and Pesendorfer and Schmidt-Dengler (2008) for dynamic games (see Srisuma (2013) for an

extension to games with ordered choices). This estimation approach relies on the necessary

condition for an equilibrium: i.e., choice probabilities are a fixed point of the best-response

probability mapping. In a first step, the nonstationary oblivious CCP giving the equilibrium

policy rule are estimated from the data. Next, using the CCP, I obtain the nonstationary

oblivious choice-specific value functions for each candidate parameter. In this step, I avoid

forward-simulation by using the matrix inversion method suggested by Aguirregabiria and

Mira (2007) and Pesendorfer and Schmidt-Dengler (2008). In the last step, I estimate the

parameter of interest by minimizing the distance between the predicted CCP and the actual

CCP.

In dynamic games with unordered choices (such as the ones studied in Pesendorfer and

Schmidt-Dengler (2008)), unbounded shocks guarantee that all actions are chosen with posi-

tive probability: the Hotz-Miller inversion approach provides a one-to-one mapping between

choice probabilities and all differences in choice-specific value functions. This is not always

the case in games with ordered choices. Under monotonicity of equilibrium strategies, the

inversion approach must account for the fact that choice probabilities can only be mapped to

differences in choice-specific value functions between actions played with positive probability.

First-step estimation:

Movie theaters’ adoption-policy function. The estimation proceeds by first recovering the

nonstationary oblivious CCP governing theaters’ equilibrium adoption of digital projectors.

The CCP Pt(a
no
it |xit), which are a function of time, and the type and state of firm i, are

estimated using an ordered probit model, and in what follows are assumed to be known.

Denote P̂t(a
no
it |xit) estimates of the nonstationary oblivious CCP.

Monotonicity of equilibrium adoption strategies can be used to characterize the mapping

from CCP to differences in choice-specific value function. Denote the set of actions played

with positive probability in period t and state xit by

Supp(xit, t) = {ai ∈ Ai : Pt(ai|xit) > 0} ⊆ Ai

Let the elements of Supp(xit, t) be ranked in increasing order and indexed by k. Denote

by ak the kth largest element of Supp(xit, t). Invoking the monotonicity of strategies, the
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indifference condition between action ak and ak+1 can be expressed as

Wt(ak|xit)− ak(pt + ϵi,k) = Wt(ak+1|xit)− ak+1(pt + ϵi,k)

⇔ ϵi,k =
∆Wt(ak+1, ak|xit)

ak+1 − ak
− pt

(12)

where ∆Wt(ak+1, ak|xit) is the difference in the oblivious choice-specific value functions of

converting ak+1 and ak screens to digital in state (t,xit). Equation (12) expresses the cut-offs

characterizing the equilibrium adoption strategy as a function of differences in the choice-

specific value function. These cut-offs can be used to map CCP to differences in the choice-

specific value function

Pt(a
no
it ≤ ak|xit) = 1− F (ϵi,k) = 1− F

(
∆Wt(ak+1, ak|xit)

ak+1 − ak
− pt

)
(13)

Differences in choice-specific value functions can be obtained from knowledge of the CCP,

by inverting equation (13):

∆Wt(ak+1, ak|xit)

ak+1 − ak
− pt = F−1 (1− Pt(a

no
it ≤ ak|xit)) (14)

Using equation (14), I can construct estimates of ∆̂Wt(ak+1, ak|xit) from knowledge of the

CCP P̂t(a
no
it ≤ ak|xit) estimates for all ak ∈ Supp(xit, t).

Value functions. Given a candidate parameter vector and knowledge of the CCP, the ex-

pected oblivious value function solves a system of linear equations. For each firm type and

state xit = (τ (i), sit) and period t = 1, . . . , T ,

Ṽτ (i),t(sit|ano) =

Sτ(i)−sit∑
ait=0

Pt(a
no
it |xit)

[
πτ (i)(sit, ht(a

no))− anoit (pt + E[ϵi|anoit ,xit])
]

+ β

Sτ(i)−sit∑
ait=0

Pt(a
no
it |xit)Ṽτ (i),t+1(si,t+1|ano)

(15)

where si,t+1 = sit + anoit .

In period t = T , the industry enters its long-run steady state where ht = 1 and sit = Sτ (i)

for all i and t > T . All firms that have not fully converted yet are restricted to do so, that

is, PT (Sτ (i) − sit|xi,T ) = 1 for all xi,T . (as discussed above, T is chosen large enough so

that firms have completed their conversion by this period with probability close to one). For

t > T , the value function is constant and equal to:
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Ṽτ (i),T+1(Sτ (i)|ano) = πτ (i)(Sτ (i), h = 1) + βṼτ (i),T+1(Sτ (i)|ano) =
∞∑
l=0

βlπτ (i)(Sτ (i), h = 1)

Denote by L the cardinality of the set of possible type-state combination xit = (τ (i), sit).

L equals
∑
τ∈T

(Sτ+1) because the number of digital screens in a type-τ theater is an element of

the set Sτ = {0, 1, ..., Sτ}. Collecting the equilibrium ex-ante value functions Ṽτ (i),t(sit|ano)

for all t = 1, . . . , T , all types τ ∈ T , and states s ∈ Sτ in matrix notation, the expected

value function as a function of a candidate structural parameter α can be written

Ṽ(α) =
∑
a

P(a)
(
Π(α)− a(p+ e(a)

)
+ β · F · Ṽ(α)

= (I− β · F)−1

{∑
a

P(a)
(
Π(α)− a(p+ e(a))

)} (16)

where Ṽ(α) is the (L · T ) × 1 dimensional vector of ex-ante value functions, I is the

(L · T )-dimensional identity matrix, F is the (L · T )× (L · T ) dimensional matrix consisting

of a type-τ theater’s conditional choice probabilities {Pt(a|τ , s)}Sτ−s
a=0 in row (τ , s, t) and

columns {(τ , s + a, t + 1)}Sτ−s
a=0 and zeros in the remaining columns; For t = T , all rows

{(τ , s, T )}τ ,s transition to the absorbing state (τ , Sτ , T ) with probability one. P(a) is an

(L · T )× (L · T )-dimensional matrix of CCP with diagonal elements equal to Pt(a|τ , s) and
off-diagonal elements equal to zero, Π(α) is an (L · T ) × 1 vector of single-period profits

with row (τ , s, t) containing πτ (s, ht), p is an (L · T ) × 1 block vector of adoption costs

with row (τ , s, t) containing pt, and e(a) is an (L · T )× 1 vector with row (τ , s, t) equal to

E[ϵi|a, (τ , s)]. The matrix (I−β ·F) is invertible because it is a strictly diagonally dominant

matrix (1 > β
Sτ−s∑
a=0

Pt(a|τ , s)).

Let Ṽ(α) = {Ṽτ ,t(s;α)}τ∈T ,s∈Sτ ,t=1,...,T be the solution of system (16), for a given can-

didate parameter α and the actual equilibrium CCP vector played in the data. The pre-

dicted nonstationary oblivious choice-specific value functions W̃t(a|xit;α), and predicted

CCP P̃t(ait|xit;α) can be derived as follows

W̃t(a|xit;α) = βṼτ (i),t+1(si,t+1;α) where xit = (τ (i), sit) and si,t+1 = sit + a (17)

P̃t(a
no
it ≤ ak|xit;α) = 1− F

(
∆W̃t(ak+1, ak|xit;α)

ak+1 − ak
− pt

)
for all ak ∈ Supp(xit, t) (18)
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Second-step estimation:

In the second step, the underlying parametersα are set such that the predicted CCP P̃t(a
no
it ≤

ak|τ (i), sit;α) match estimates of the actual equilibrium CCP P̂t(a
no
it ≤ ak|τ (i), sit) (obtained

in step 1) for every firm type τ ∈ T , state s ∈ Sτ , period t = 1, . . . , T , and action ak ∈
Supp(xit, t). Equivalently, one can match the differences in choice-specific value functions,

which are a monotone transformation of the CCP. I follow this second approach.25 The

objective function is

Q(α) = ||∆W̃t(ak+1, ak|τ , s;α)− ∆̂Wt(ak+1, ak|τ , s)||2

=

√∑
τ ,s,t,k

(
∆W̃t(ak+1, ak|τ , s;α)− ∆̂Wt(ak+1, ak|τ , s)

)2 (19)

The estimator of the underlying parameters is the solution of

min
α

Q(α)

Standard errors are obtained by bootstrap sampling. One difficulty with non-parametric

bootstrap is the presence of correlation in decisions across local markets and firms, there-

fore, sampling market-histories (or firm-histories) with replacement, as is commonly done in

dynamic oligopoly games, is not a valid approach. Instead, a parametric boostrap procedure

is used. This approach is detailed in Appendix C.2.

6.2 Identification

This section examines the identification of the industry model. In a NOE, firms take the

evolution of the industry state as exogenous and deterministic. This path would be in-

deed deterministic with infinitely many firms playing an equilibrium nonstationary oblivious

strategy ano. In this section, I assume that the econometrician observes a single infinite

population of firms (fixing the set of firm types) playing strategy ano over a finite horizon

of length T . This approach differs from the common identification approach for MPE in

dynamic oligopoly games which relies on a cross-section of market-paths and requires, under

multiplicity of equilibria, that the same equilibrium is played in all markets. By using only

a single market, the paper sidesteps the multiplicity issue by identifying the parameters of

interest from observation of many firms of the same type.

25Matching differences in the choice-specific value functions is preferred here because the objective function
is quadratic in the parameter, and the gradient can be easily derived.
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The conditional choice probabilities Pt(a|τ , s) are identified from the data for every

firm type τ ∈ T , firm state s ∈ {0, 1, . . . , Sτ − 1}, action a ∈ {1, . . . , Sτ − s}, and pe-

riod t = 1, . . . , T − 1. The corresponding differences in the choice-specific value functions

∆Wt(a
′, a|τ , s) are identified for actions played with non-zero probability (Equation (14)).

As is standard in the literature on identification of dynamic decision problems (Rust (1994),

Magnac and Thesmar (2002), and Bajari, Chernozhukov, Hong, and Nekipelov (2015)), the

discount factor and the distribution of firm shocks (β, F ) are assumed to be known.

The unknown elements are the (nonstationary) oblivious single-period profits which are

a function of the firm type and state (τ (i), sit), action ait, and time t. Adoption costs are

assumed to enter linearly into single-period profits under the restriction

πτ (i)(sit, ht)− ait(pt + ϵit)

which fixes the dependence of profits on firm adoption decision ait. This restriction is ar-

guably well-informed given the structure of the problem. The structural parameters to

identify are, therefore, the set of single-period profits gross of the adoption cost

α ≡ Π = {πτ (s, ht)}τ∈T ,s∈Sτ

for every firm type τ ∈ T , state s ∈ Sτ , and period t = 1, . . . , T . The number of unknown

parameters is

(L× T ) =
∑
τ∈T

(Sτ + 1)× T

The necessary conditions for optimality can be expressed as

∆Wt(ak+1, ak|τ , s) = ∆W̃t(ak+1, ak|τ , s;Π), for τ ∈ T , s ∈ {0, 1, . . . , Sτ − 1}, t ≤ T − 1

(20)

where (ak+1, ak) ∈ Supp(τ , s, t), and ∆W̃t(ak+1, ak|τ , s;Π) can be derived by Equation

(17). Importantly, there are no equilibrium conditions for s = Sτ (the theater has completed

its conversion) or t = T (the steady state is reached and all firms are restricted to convert

their remaining screens).

Because actions 0 and Sτ(i) − sit are always played with positive probability, Equation

(20) implies at least (L−τ) ·(T−1) identifying restrictions (where τ is the cardinality of type

space T ). The next lemma shows that if action a = 1 is played with positive probability, some

of the optimality conditions are linearly dependent: intuitively, the optimality condition for

any pair of actions ak and ak+1 can always be rewritten as a linear combination of optimality

conditions involving actions 1 and 0. In this case, there are in fact exactly (L− τ) · (T − 1)
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identifying restrictions.

Lemma 1. If action a = 1 is played with positive probability, the necessary optimality

conditions (20) form a system of (L − τ) · (T − 1) linearly independent equations in the

(L× T ) unknown parameters Π.

The proof is included in Appendix C.1. Combining Equations (16) and (17) for actions

ak = 0 and ak+1 = 1, one obtains a system of linear equations in the unknown parameter Π

Y = X ·Π (21)

where Y and X are a ((L− τ) · (T − 1))× 1-dimensional and ((L− τ) · (T − 1))× (L× T )-

dimensional matrices which are function of the (known) CCP, prices, discount factor β, and

distribution of the firm-specific shock F . I augment this system of equations with two sets

of restrictions.26

Assumption 3. The following payoff normalizations are imposed. Single-period profits un-

der the film technology are set to zero: πτ (s = 0, ht) = 0 for every type τ ∈ T and period

t = 1, . . . , T . Single-period profits when there are no digital movies (i.e., h1 = 0) are set to

zero: πτ (s, h1 = 0) = 0 for every type τ ∈ T and firm state s ∈ {0, 1, . . . , Sτ}.

Assumption 3 imposes a total of L + τ × (T − 1) restrictions. Augmenting system (21)

with these restrictions yields a system of (L×T ) in (L×T ) equations in as many unknowns.

Π is exactly identified under a full rank condition. If action a = 1 is not played, then there

are more restrictions than unknowns and Π is over-identified (under the normalizations of

Assumption 3).

Finally, note that πτ (s, ht) is only identified over the support of the deterministic path

{ht}t=1,...,T . Therefore, for every firm type τ ∈ T and firm state s ∈ {0, 1, . . . , Sτ}, at most T

restrictions are available to identify the dependence of πτ (s, ht) on ht.
27 In the next section,

I impose parametric restrictions that reduce the dimensionality of the parameter space Π

and allows identification of the effect of ht on profits.

26The first normalization I impose is similar to the usual “outside good” action normalization found in the
literature, where the single-period payoff of a reference action is set to zero. In my case, the single-period
payoff of choosing action a = 0 is set to zero when s = 0.

27If the econometrician has access to a cross-section of markets (with infinite number of firms), e.g., different
countries, multiplicity of equilibria can help with the identification of the effect of ht. Different deterministic
paths for ht would be observed across markets and one can use the time series and cross-sectional variation
in ht to identify the effect of ht.
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6.3 Parameterization

This section details the model parameterization. Operating profits are obtained by summing

profits per digital screen (relative to film) over the sit digital screens converted by theater i

and time t. Profits from film screens are normalized to zero.

The parameterization aims to capture two features of the model: (i) the heterogeneity

in profits per digital screen across theaters and markets and (ii) the positive dependence of

these profits on the share of movies available in digital ht. In particular, when ht is low (early

phase of diffusion), theaters have a limited choice of digital movies and optimally convert

only a fraction of their screens to digital: the marginal benefit from converting an additional

screen to digital is decreasing.

To capture this dependence parsimoniously, I define, for each theater, two levels of profits

per digital screen: πd(τ ) corresponds to the baseline profits if all movies were available in

digital (ht = 1) and π̃d(τ , ht) are profits per digital screen if the fraction of digital movies is

ht (with ht < 1).

When ht is less than one, theater i has a limited choice of digital movies, therefore,

its profits from a digital screen (π̃d(τ , ht)) will be lower than if all movies were available

in digital (πd(τ )). Denote by δ(τ , ht) ≡ πd(τ ) − π̃d(τ , ht), the profit loss (or decay) from

limited availability of digital movies. As ht converges to one, δ(τ , ht) is expected to decrease.

In summing profits across digital screen, the following functional form is assumed: a

fraction min{ sit
Sτ(i)

, ht} of screens yields profits πd(τ ) per screen, whereas the remaining

max{0, sit
Sτ(i)

− ht} yield profits π̃d(τ , ht) = πd(τ )− δ(τ , ht). Theater i’s operating profits in

state (xit, ht) are therefore given by

πτ (si, ht) =

 siπd(τ ) if si
Sτ(i)

≤ ht

Sτ (i)

(
si

Sτ(i)
πd(τ )− ( si

Sτ(i)
− ht)δ(τ , ht)

)
if si

Sτ(i)
≥ ht

(22)

This specification captures decreasing marginal benefits from an additional digital screen.

For instance, a 5−screen theater with adoption rate sit
Sτ(i)

= ht = 0.4 receives profits per

digital screen equal to πd(τ ). If the firm were to convert its third screen to digital, the

marginal benefit would be π̃d(τ , ht) < πd(τ ).

The effect of a marginal increase in ht on profits (i.e., the “network benefit”) for a theater

that has fully converted ( sit
Sτ(i)

= 1) is given by

Sτ (i)

(
πd(τ )− π̃d(τ , ht) + (1− ht)

∂π̃d(τ , ht)

∂ht

)
> 0

The term πd(τ )− π̃d(τ , ht) corresponds to the change in profits for the marginal screen,
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whereas (1− ht)
∂π̃d(τ ,ht)

∂ht
corresponds to the change in profits for the supra-marginal screens

(a share sit
Sτ(i)

−ht = 1−ht of screens). Profits for infra-marginal screens (a share ht) are not

affected since constant and equal to πd(τ ).

For the profits per digital screen πd(τ ) and decay δ(τ , ht), a reduced form is used:

πd(τ ) = α0 + α1Sτ (i) + α2arti + α3S−i + αmarketi + αchaini
(23)

δ(τ , ht) = δ0 + δ1Sτ (i) + δ2ht (24)

where Sτ (i) is the number of screens in theater i, arti is an indicator for art house theaters,

S−i is the total number of screens owned by theater i’s competitors, and αmarketi and αchaini

are dummies for market size and chain identifier. Equation (23) specifies how profits per

digital screen depends on firm and market characteristics. Equation (24) specifies the decay

in profits. The decay depends on theater size and availability of digital movies. The decay

is expected to decrease with digital movie availability. Because larger theaters screen more

movies, the decay is expected to increase with theater size for a given level of ht.
28

The parameters of interest are the vector

α = ({αk}k=0,...,3, αmarket=1,...,6, αchain=1,...,3, {δk}k=0,...,2)

entering the profit per digital screen and decay. All parameters are dynamic in the sense

that they must be inferred from firms’ dynamic decision process. The distribution F of the

firm-specific shock ϵit is set to N (0, σ2). The discount factor used is β = 0.95. Robustness

checks are conducted in Appendix D.4.

6.4 Endogeneity of digital movie availability

The model is estimated under the assumption that a nonstationary oblivious equilibrium

generates the data (Assumption 2). In equilibrium, firms take the evolution of digital movie

availability as deterministic, following the process {ht(a
no)}t=1,...,T (Equation (9)).

If the mapping Γ(·) were known, ht(a
no) could be computed by simple matrix multiplica-

tion from the knowledge of the equilibrium CCP and the initial industry state x1. Estimating

Γ(·) precisely is, however, infeasible due to the high-dimensionality of xt and the short panel

nature of the data (the asymptotics are in T ). Instead, I exploit the actual process {ht}t=1,...,T

observed in the data as an estimator for {ht(a
no)}t=1,...,T : indeed, ht converges to ht(a

no) as

the number of firms grows to infinity (the asymptotics are in N).

28Smaller theaters might be able to delay their conversion longer because they screen fewer movies overall.
Ignoring this mechanism would affect the estimation results by predicting lower profits for smaller theaters.
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The actual process {ht}t=1,...,T observed in the data is determined endogenously by the

realized adoption of digital screens. To estimate the parameter δ2 characterizing the effect

of ht on the decay in single-period profits, I follow an approach similar to Gowrisankaran,

Park, and Rysman (2014). First, I include a set of time dummies for t = 1, . . . , T in place

of ht in equation (24). Second, I regress the time dummy coefficients on ht, and instrument

the latter variable by digital movie availability in the U.S. hUS,t. This identification strategy

exploits the fact that whether a U.S.-produced movie is released in digital in France at time t

is at least partly a function of whether the movie was released in digital in the U.S. However,

digital release decisions in the U.S. were arguably not affected by the installed base of screens

in France (Appendix B discusses the validity of this instrument in more detail).29 This two-

step approach addresses the issue of hierarchical variation in a similar way as Donald and

Lang (2007) for the treatment effect literature.

The estimation approach differs from that of Gowrisankaran, Park, and Rysman (2014)

in two respects: in their paper, the time dummy coefficients capture the present discounted

value of the expected stream of future benefits from the complementary goods market,

whereas, in the current paper, these coefficients enter the (static) single-period profits of

theaters and, therefore, do not include the future benefits from digital movie availability;

second, their paper assumes a general auto-regressive structure (in particular with one lag)

on the time coefficients, allowing for “accumulated capital” of complementary goods. By

contrast, the current paper assumes that movies are short-lived from the perspective of the-

aters. This assumption seems reasonable with a period of 6 months and a focus on miniplexes

and multiplexes which rules out smaller “continuation” theaters.

6.5 Estimation results

6.5.1 First-step estimates

Theaters’ adoption-policy function. The nonstationary oblivious CCP are estimated using a

flexible reduced form, via an ordered probit model. To further control the size of the state

space, theaters’ strategy space (the number of screens that can be converted) is restricted

to lie on a grid. More precisely, miniplexes (theaters with 4 to 7 screens) are assumed to

adopt on the space sit/Sτ (i) ∈ {0, 1
4
, 1
2
, 3
4
, 1}, whereas multi- and megaplexes (theaters with

8 screens or more) are assumed to adopt on the space sit/Sτ (i) ∈ {0, 1
8
, 2
8
, ..., 7

8
, 1}. Figure 3

29This instrument would be less valid if aggregate shocks (affecting all firms in France and the U.S.) are
important. Given the data available, there is less concern for unobserved aggregate shocks to the adoption
cost. In addition, under the payoff normalization imposed, the difference between profits from a digital and
film screen is estimated. As a result, aggregate shocks to box-office revenue (which are independent of the
screening format) are differenced out.
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Figure 3: Density estimate of the intra-firm rate of adoption by firm size

(a) Miniplexes (4-7 screens) (b) Multi/Megaplexes (8 screens or more)
Notes: Both density estimates correspond to the distribution of sit/Sτ (i) conditional on
sit/Sτ (i) > 0 and sit/Sτ (i) < 1

shows kernel density estimates of the within-firm adoption rates for miniplexes (panel (a))

and multi/megaplexes (panel (b)), conditional on partial adoption.30 For miniplexes, the

density has three identifiable modes. Additionally, 93.1% of observations are within 5%

of a grid point in {1
4
, 1
2
, 3
4
}. For multi- and megaplexes, 96.2% of observations are within

5% of a grid point in {1
8
, 2
8
, ..., 7

8
}. Overall, the coarsening of the state space reduces its

dimensionality without imposing too strong a restriction on firms’ admissible states.

Because theaters cannot divest and roll back the film technology, a firm cannot transition

to lower states. For instance, a four-screen theater with sit/Sτ (i) = 3/4 can only transition

to sit+1/Sτ (i) ∈ {3/4, 1}. In this sense, next period’s possible states depend on the firm’s

adoption rate in the current period. This dependence is accounted for in constructing the

likelihood (see Appendix C.3).

In a nonstationary oblivious equilibrium, theaters’ adoption decision are a function of the

firm state xit = (τ (i), sit) and time. A theater’s share of screens converted to digital between

t and t + 1, denoted ait/Sτ (i), is explained by the number of screens in the theater (and its

square), the share of digital screens in the theater in period t, whether the theater is an art

house, competitors’ total number of screens, a polynomial in time, and its interaction with the

theater’s art house status. The polynomial in time captures the effect of the deterministic—

30A gaussian kernel is used and the bandwidth is selected using the biased cross-validation approach of
Scott and Terrell (1987).
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under nonstationary oblivious beliefs—processes {ht, pt, hUS,t}, which all vary in the time

series. A second specification augments the model by including market dummies to control

for market size. A third specification includes both market dummies and theater-chain

dummies for the three major French theater chains (Gaumont-Pathé, CGR, and UGC).

Finally, a fourth specification also controls for interactions between theater size Sτ (i) and all

other variables.

Table 3 presents the estimates of the ordered probit model under the four specifications.

In specification (4), where all variables are interacted with Sτ (i), interaction terms are omit-

ted. Marginal effects are, however, similar to the first three specifications.

As expected, across the four specifications, the time effects are positive. This trend

reflects decreasing adoption costs and increasing digital movie availability. Larger theaters

are more likely to adopt, but the marginal effect is decreasing. The share of a theater’s

screens already converted to digital is negatively related to further adoption. This finding

is expected because, given a share of digital movies, theaters lagging in their adoption (low

sit/Sτ (i)) have a greater incentive to adopt.

Competitors’ total number of screens does not significantly impact a theater’s likelihood

of adoption. Theaters located in Paris are more likely to adopt than theaters located in the

small urban areas with fewer than 20, 000 inhabitants and rural areas, although the effect

is not significant. Among the chain dummies, CGR theaters are more likely to adopt than

single theaters or theaters belonging to smaller chains.

Appendix C.4 compares model predictions for the share of digital screens to actual shares

in the data. Overall, and given the limitations imposed by the parametric specification of

the policy function, the model captures the main trends in the data well. The rest of the

analysis uses specification (3) based on the AIC.

6.5.2 Second-step estimates

This section presents estimation results for the profit per digital screen (the baseline πd(τ (i))

and decay δ(τ (i), ht)). These components are combined, in equation (22), to obtain theaters’

single-period operating profits.

Table 5 shows estimates of the parameters entering the single-period profits per digital

screen relative to a film screen. First, there is heterogeneity in profits across theaters.

Profits per screen are increasing in theater size. This is the case if there are scale economies

in operating a theater, and these economies of scale are larger under digital technology than

under 35mm film. Art house status, market size, and competitors’ screens do not significantly

affect profits per digital screen. This is expected because these variables affect only revenues

not the cost of operating, whereas πd(τ (i)) reflects the cost-reduction from converting a

screen to digital.
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Table 5: Structural parameter estimates (in 2010 e)

Estimate s.e

Profit per digital screen: πd(τi)
Constant 4, 024.86 959.18
Own screens 112.00 51.17
Art house 638.23 696.07
Competitors’ screens -2.16 5.42

Market dummies
Paris - outer suburbs -219.65 278.49
Urban unit - 20k-100k inhabitants -150.87 223.03
Urban unit - >100k inhabitants -177.61 230.50
Paris - inner suburbs -325.05 310.92
Paris 246.76 295.56

Chain dummies
Gaumont-Pathé -229.05 146.82
CGR 622.02 166.90
UGC -1, 650.32 430.57

Decay function: δ(τi, ht)
Constant 3, 920.84 1, 096.80
Own screens 17.03 42.71
Digital movies (%) -2, 196.62 444.29

Note: Standard errors are calculated using Nb = 500 bootstrap
samples. For market dummies, the omitted category is urban unit
with fewer than 20k inhabitants and rural units. For the chain
dummies, the omitted category is single firm and small chains.
The standard deviation of firm shocks σ is set to 10, 000 e.
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Figure 4: Histogram of πd(τ (i)) (in 2010 e)

The decay function is decreasing in the availability of digital movies ht. As ht increases, a

theater’s choice set of digital movies increases so profits per digital screen increase. Theater

size does not significantly impact the decay. One would expect the decay to be larger for

large theaters, fixing digital movie availability, because larger theaters screen more movies.

Profits per digital screen relative to film implied by the structural estimates have the

correct order of magnitude. Figure 4 shows the distribution of single-period profits per

digital screen across theaters (over a period of 6 months) predicted by the model. Profits

per digital screen are between e2, 603 and e6, 423, with a mean of e4, 928 and median of

e4, 986. These results are contrasted with estimates of projectionist’s wages. Collective

bargaining agreements set a projectionist’s minimum monthly salary at e1, 500 over the

period of interest, or e9, 000 over a period of 6 months. The latter figure is an upper bound

on cost-reductions per screen because projectionists are replaced with lower-wage workers.

Therefore, profits levels implied by the structural model are economically plausible.

7 Counterfactual Analysis

This section uses the estimated model to quantify, via counterfactual simulations, the delays

in adoption and the effect of policy remedies. Two counterfactual adoption paths are simu-

lated for the industry: in the first benchmark, a social planner maximizes aggregate theater
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profits taking as given upstream distributors’ reaction function; in the second benchmark,

the social planner mandates coordination on digital distribution for all movie–periods, and

maximizes aggregate theater profits. Results point to a sizeable surplus loss, 41% of which

is due to externalities among downstream theaters. The last subsection analyzes the role of

broad-based and targeted subsidies in reducing this welfare gap.

7.1 Planner’s benchmark

By converting to digital, theaters raise distributors’ incentive to release movies in digital.

This increased number and variety of digital movies is a positive externality on other theaters

not internalized by the adopter. As a result, industry profits are not maximized under the

non-cooperative market outcome.

In this benchmark, the social planner chooses a sequence of adoption decisions for each

theater {at = a1t, ..., aIt}t≥0 to maximize the discounted sum of aggregate theater profits

max
{at}t≥1

E

[∑
i∈I

∞∑
t=1

βt−1Π(ait,xt, pt, hUS,t, ϵit)

]
s.t. ht = Γ(xt, hUS,t) (25)

where the expectation is taken with respect to the sequence of theaters’ idiosyncratic

shocks and the planner takes distributors’ equilibrium best response Γ as given. The initial

industry state x1 is fixed to si1 = 0 for all i.

The Planner’s problem (25) is computationnally hard to solve because of the large number

of players in the industry: the industry state space is high-dimensional, and an industry

adoption policy rule is, in general, a function of the realization of the full vector of adoption

shocks {ϵit}i∈I ∈ RI , making the policy-rule space high-dimensional as well.

I deal with these computational issues in two steps. First, I replace the high-dimensional

industry state vector xt with its first moment (the aggregate share of digital screens in the

industry st/S) and parameterize distributors’ reaction function (Equation (3)) as a function

of the aggregate share of digital screens in the industry and the share of digital movies in the

U.S. This approximation helps reduce the dimension of the state space and Γ mapping.31 I

use the following reduced-form specification

ht =
(st
S

)ηs
hηh
US,t (26)

The parameters (ηs, ηh) are calibrated using the short-panel of aggregate variables in the

31Replacing the industry state by moments has been proposed as an approximation method to MPE by
Ifrach and Weintraub (2017). This assumption is restrictive in that the social planner uses only a fraction
of the data available (i.e., st

S instead of xt)).
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data. The robustness of the results is also evaluated under alternative choices for (ηs, ηh).

Second, I leverage the fact that the object of interest is the maximized value of the

planner’s objective function (discounted sum of industry profits), not the social planner’s

policy rule per se. Therefore, instead of solving the planner’s full dynamic decision problem,

I search for the maximum value of the objective function over the space of feasible industry

adoption paths {at = a1t, ..., aIt}t≥1. To do so, I generate a large number of random industry

adoption paths and select the path that maximizes the objective function in problem (25).

Details about this procedure are included in Appendix D.1. Let {aP
t }t≥1 be the planner’s

optimal adoption path.

As a robustness check, the social planner’s dynamic problem (25) is explicitly solved

after reducing the dimension of the state and strategy spaces. The results are presented in

Appendix D.2. The optimum policy rule obtained yields an industry diffusion path that is

consistent with {aP
t }t≥1.

7.2 Coordination benchmark

To quantify the magnitude of excess inertia in the upstream distribution market, I assume

that the planner mandates multi-homing for all movies from the first period on and maximizes

aggregate theater profits. In other words, ht = 1, ∀t. The social planner chooses a sequence

of adoption decisions for each theater {at = a1t, ..., aIt}t≥1 to maximize the discounted sum

of aggregate theater profits

max
{at}t≥1

E

[∑
i∈I

∞∑
t=1

βt−1Π(ait, pt, ϵit)

]
s.t. ht = 1 (27)

where the expectation is taken with respect to the sequence of theaters’ idiosyncratic shocks

and I omit the dependence of single-period profits on (xt, hUS,t) because ht is set to one.

The initial industry state x1 is fixed to si1 = 0 for all i. Because the value of ht is fixed,

network effects (in hardware adoption) are shut-down, and the problem is equivalent to

profits maximization by each theater: I solve a single-agent dynamic decision problem for

each theater i, given ht = 1,∀t. In this sense, the coordination benchmark can be interpreted

as the counterfactual market equilibrium under a mandate on multi-homing upstream.

Each single-agent decision problem is an optimal stopping problem. Indeed, when ht = 1,

the marginal benefit from converting a screen to digital is constant across screens. As a

consequence, theaters make a 0 − 1 adoption decision. Decreasing adoption costs {pt}t≥1

and exogenous theater characteristics are the factors driving the diffusion process. Starting

from T , each problem is solved by backward induction.
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Let {aC
t }t≥1 be the solution of problem (27). Without accounting for distributors’ profits,

the coordination benchmark defined above is not necessarily optimal. Indeed, mandating

multi-homing may raise distributors’ costs due to a loss of scale economies. I investigate this

issue in Appendix D.3 and find that the cost-reduction from digital distribution more than

compensates for the loss in scale due to multi-homing. Distributors’ profits are higher under

the coordination benchmark than under the market outcome (holding box office revenue

constant). The coordination benchmark, therefore, will provide a lower bound on the welfare

loss due to coordination failure upstream.

7.3 Quantifying the delay in adoption

Figure 5 (top) shows the expected diffusion paths under the non-cooperative market out-

come and the two benchmarks for digital screens (left) and digital movies (right). In the

planner’s benchmark, I use the parameters estimates (η̂s, η̂h) = (0.52, 0.21) obtained through

calibration (by ordinary least squares, Equation (26)).32

The diffusion of digital is faster under the two counterfactual scenarios: by 0.8 to 3 years

for the time to 10% adoption, and 0.3 to 0.5 years for the time to 90% adoption. Addition-

ally, the diffusion path is steeper in the planner’s benchmark relative to the coordination

benchmark because, in the former, digital movie availability is endogenously determined by

the installed base of digital screen. The planner must build up the installed base of digital

screen to incentivize distributors to switch.

Next, I compare theaters’ aggregate profits under the three scenarios. Profits are com-

puted as the discounted sum of operating profits net of adoption costs for all theaters, given

adoption decisions and digital movie availability. Denote aggregate theater surplus under

the non-cooperative market outcome, planner’s benchmark, and coordination benchmark by

TSM , TSP , and TSC .

Table 6 shows industry profits under the three scenarios. Profits from film are normal-

ized to zero, so these figures are relative to the status-quo with no conversion to digital.

Industry profits net of adoption costs are 76.18 million euros under the market outcome,

82.25 million euros under the planner’s benchmark, and 90.65 million euros under the coor-

dination benchmark. The difference TSP − TSM is attributed to downstream excess inertia

(specifically, adoption externalities across theaters), and TSC−TSP to excess inertia among

upstream distributors.33 Overall, excess inertia causes theaters’ surplus to be 16% lower

than under full coordination. Adoption externalities across downstream firms explain 41%

32I evaluate the sensitivity of the results with respect to these parameters in Appendix D.4.
33Upstream excess inertia is estimated as a residual and can arise because of coordination failure and

adoption externalities across distributors.
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of this surplus loss.

Table 6: Theaters’ surplus under the three scenarios (in millions, 2010 e)

Market Planner Coordination
outcome benchmark benchmark

Gross Industry Profits 167.54 193.75 209.52
Adoption costs 91.36 111.49 118.88
Net Industry Profits 76.18 82.25 90.65
Change in Net Profits 0 6.07 14.46
Change in Net Profits (in %) 0 7.97 18.98

Note: Profits from film are normalized to 0: all profits are relative to the
status-quo with no adoption.

7.4 Policy remedies

Having characterized the delay in adoption relative to the two efficient benchmarks, this

section evaluates the effect of various policy remedies aiming at accelerating adoption. In

particular, I consider broad-based and targeted subsidies to adoption costs. For each policy,

a counterfactual NOE is computed, the industry adoption path is simulated, and aggregate

profits are computed. Details about the algorithm used to solve for a NOE are presented in

Appendix D.6.

Broad-based (or blanket) subsidies are implemented by assuming that the adoption cost

incurred by theaters in period t is (1 − γ)pt where γ ∈ (0, 1).34 Figure 5 (middle) shows

the diffusion paths under various broad-based subsidies (γ ∈ {0, 0.25, 0.5, 0.75}), for digital
screens (left) and digital movies (right). Larger subsidies encourage faster diffusion as ex-

pected. Table 7 presents industry profits and total adoption costs (i.e., gross of the subsidy)

corresponding to these counterfactual policies. A subsidy of γ = 0.25 increases net industry

profits by 7.93% relative to the market outcome and reaches a level close to the planner’s

benchmark. Higher levels of the subsidy are detrimental (net industry profits are between

7.4% and 21% lower), however, because they induce too fast a diffusion leading to excessively

large adoption costs relative to the return of digital conversion.

To evaluate the distributive impact of these broad-based subsidies, I compute the mean

per-screen subsidy by theater size when γ = 0.25. Multiplexes (8 screens of more) receive a

34Aguirregabiria and Suzuki (2014) and Norets and Tang (2014) show that counterfactual behavior is iden-
tified when single-period payoffs change additively by pre-specified amounts—even if payoffs are normalized.
The subsidy policy falls into the category of pre-specified additive changes to single-period payoffs (indepen-
dent of the structural parameters) and counterfactuals are identified based on the results of Aguirregabiria
and Suzuki (2014) (Proposition 3).
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Figure 5: Counterfactual diffusion paths under the efficient benchmarks (top), blanket sub-
sidies (middle), and subsidies targeting miniplexes (bottom)
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Table 7: Theaters’ surplus under counterfactual blanket subsidies (in millions, 2010 e)

Market Blanket subsidies

outcome γ = 0.25 γ = 0.50 γ = 0.75

Gross Industry Profits 167.54 217.95 262.06 280.74
Adoption costs 91.36 135.73 191.5 220.55
Net Industry Profits 76.18 82.22 70.56 60.19
Change in Net Profits 0 6.04 -5.63 -15.99
Change in Net Profits (in %) 0 7.93 -7.38 -20.99

Note: Profits from film are normalized to 0: all profits are relative to the status-quo
with no adoption. γpt corresponds to the subsidy level incurred by the social planner
and (1− γ)pt is incurred by the theater. “Adoption costs” include costs to theaters
and the social planner.

5.3% higher subsidy per screen than miniplexes. An 8-screen theater receives on average a

8.2% higher subsidy per screen than a 4-screen theater, and a 23-screen theater receives a

26.3% higher subsidy per screen than a 4-screen theater. These results are consistent with the

fact that larger firms incur higher adoption costs (per screen) because they are early adopters:

they have higher returns from converting to digital and, due to capital indivisibilities, they

can adopt gradually and initially convert a smaller fraction of their screens (when ht is low).

Next, I consider the effect of subsidies targeting miniplexes. Figure 5 (bottom) shows

the diffusion paths under targeted subsidies to miniplexes (γ ∈ {0, 0.25, 0.5, 0.75}) and Table

8 presents the corresponding industry profits and adoption costs. Interestingly, a targeted

subsidy of γ = 0.25 increases industry profits by 7.65%, an outcome that is relatively close to

the corresponding broad-based subsidy but at a much lower (65%) cost to the Planner (only

miniplexes are subsidized). This result indicates that the welfare gap due to externalities

assessed in the previous section can be bridged by targeting smaller theaters delaying their

adoption.

Appendix D.5 investigates alternative targeted subsidies, i.e., to the first unit adopted,

and finds that they are not as effective as the two policies presented above.

8 Conclusion

Industries with network effects tend to coordinate on a single technology, the standard, to

exploit the benefits of a larger network. However, once bound together by the benefits of

the standard, firms may become reluctant to switch to better technologies as they become

available. In particular, adoption externalities create a wedge between the private and social

benefits from adoption. This paper studies empirically whether a new technology standard
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Table 8: Theaters’ surplus under counterfactual targeted subsidies (in millions, 2010 e)

Market Subsidies to miniplexes

outcome γ = 0.25 γ = 0.50 γ = 0.75

Gross Industry Profits 167.54 184.52 201.01 212.07
Adoption costs 91.36 102.51 122.03 138.55
Net Industry Profits 76.18 82.01 78.97 73.52
Change in Net Profits 0 5.83 2.79 -2.66
Change in Net Profits (in %) 0 7.65 3.66 -3.49

Note: Profits from film are normalized to 0: all profits are relative to the status-quo
with no adoption. γpt corresponds to the subsidy level incurred by the social planner
and (1− γ)pt is incurred by the theater. “Adoption costs” include costs to theaters
and the social planner.

can diffuse efficiently in a decentralized market. I exploit rich firm level data in the French

movie industry to assess the magnitude of excess inertia in the switch from 35mm to the

digital cinema standard.

To do so, I specify a dynamic game of digital hardware adoption by theaters and digital

movie supply by distributors. Using data on theaters’ adoption decisions and the cross-

sectional variation in theater and market characteristics, I estimate theaters’ payoff from

converting their screens to digital. The delay in adoption is assessed through counterfactuals:

first, I consider a planner maximizing theater profits taking as given distributors reaction

function; second, the planner mandates coordination on digital distribution upstream and

maximizes theater profits.

The counterfactuals show that market forces did not provide enough incentives for an

efficient switch from 35mm to digital. Industry profits are lower under the market outcome

relative to under coordination. Additionally, 59% of the surplus loss can be ascribed to excess

inertia in the upstream distribution market, whereas the rest is due to adoption externalities

in the downstream exhibition market.

Finally, the role of policy remedies is considered: e.g., adoption subsidies aligning the

private and social benefits of adoption. The results indicate that broad-based and targeted

subsidies (to small theaters) can be beneficial. Nonetheless, in the case of digital cinema, the

counterfactual analysis suggests that coordinating upstream distributors (through a mandate

on digital distribution) is more effective than subsidizing theater adoption. Recent interven-

tions in other industries indicate that policy-makers have been taking a more active role in

coordinating standard adoption in hardware-software markets: a particularly topical indus-

try are consumer electronics, where E.U. states have been considering mandating USB-C

charging ports on all smartphone manufacturers (European Commission (2021)).

44



References

Ackerberg, D. A. and G. Gowrisankaran (2006). “Quantifying equilibrium network external-

ities in the ACH banking industry”. The RAND Journal of Economics 37.3, pp. 738–761

(cit. on p. 5).

Aguirregabiria, V. and P. Mira (2007). “Sequential Estimation of Dynamic Discrete Games”.

Econometrica 75.1, pp. 1–53 (cit. on pp. 2, 20, 24, 25).

Aguirregabiria, V. and J. Suzuki (2014). “Identification and counterfactuals in dynamic

models of market entry and exit”. Quantitative Marketing and Economics 12.3, pp. 267–

304 (cit. on p. 41).

Andrew Hanssen, F. (2010). “Vertical integration during the hollywood studio era”. Journal

of Law and Economics 53.3, pp. 519–543 (cit. on p. 5).

Augereau, A., S. Greenstein, and M. Rysman (2006). “Coordination versus Differentiation

in a Standards War: 56K Modems”. The RAND Journal of Economics 37.4, pp. 887–909

(cit. on p. 5).

Bajari, P., L. Benkard, and J. Levin (2007). “Estimating dynamic models of imperfect com-

petition”. Econometrica 75.5, pp. 1331–1370 (cit. on p. 24).

Bajari, P., V. Chernozhukov, H. Hong, and D. Nekipelov (2015). “Identification and Efficient

Semiparametric Estimation of a Dynamic Discrete Game” (cit. on p. 29).

Battisti, G. and P. Stoneman (2005). “The intra-firm diffusion of new process technologies”.

International Journal of Industrial Organization 23.1-2, pp. 1–22 (cit. on p. 5).

Bordwell, D. (2013). Pandora’s Digital Box: Films, Files, and the Future of Movies. Irvington

Way Institute Press (cit. on p. 8).

Chou, C.-f. and O. Shy (1990). “Network Effect without Network Externalities”. Interna-

tional Journal of Industrial Organization 8.2, p. 259 (cit. on p. 1).

Church, J. and N. Gandal (1992). “Network Effects, Software Provision, and Standardiza-

tion”. The Journal of Industrial Economics 40.1, pp. 85–103 (cit. on p. 1).

Church, J., N. Gandal, and D. Krauske (2008). “Indirect Network Effects and Adoption

Externalities”. Review of Network Economics 7.3, pp. 337–358 (cit. on p. 1).

Clements, M. T. and H. Ohashi (2005). “Indirect Network Effects and the Product Cycle:

Video Games in the U.S., 1994-2002”. The Journal of Industrial Economics 53.4, pp. 515–

542 (cit. on p. 4).

Corts, K. S. and M. Lederman (2009). “Software exclusivity and the scope of indirect net-

work effects in the U.S. home video game market”. International Journal of Industrial

Organization 27.2, pp. 121–136 (cit. on p. 4).

45



Davis, P. (2006a). “Measuring the Business Stealing , Cannibalization and Market Expansion

Effects of Entry in the U . S . Motion Picture Exhibition Market”. The Journal of

Industrial Economics 54.3, pp. 293–321 (cit. on p. 5).

— (2006b). “Spatial competition in retail markets: Movie Theaters”. Rand Journal of Eco-

nomics 37.4, pp. 964–982 (cit. on pp. 5, 14).

Donald, S. G. and K. Lang (2007). “Inference with Difference-in-Differences and Other Panel

Data”. The Review of Economics and Statistics 89.2, pp. 221–233 (cit. on p. 33).

Doraszelski, U. and M. Satterthwaite (2010). “Computable Markov-perfect industry dynam-

ics”. RAND Journal of Economics 41.2, pp. 215–243 (cit. on p. 22).
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